Article ID: MTJPAM-D-19-00001


Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-19-00001; Volume 1 / Issue 1 / Year 2019, Pages 77-95

Document Type: Research Paper

Author(s): Dae San Kim a

aDepartment of Mathematics, Sogang University, Seoul 121-742, Korea

Received: 4 July 2019, Accepted: 16 October 2019, Available online: 28 November 2019.

Corresponding Author: Dae San Kim (Email address:

Full Text: PDF


In this paper, we construct two infinite families of binary linear codes associated with double cosets with respect to certain maximal parabolic subgroup of the symplectic group Sp(2n, q). Here q is a power of two. Then we obtain an infinite family of recursive formulas for the power moments of Kloosterman sums and those of 2-dimensional Kloosterman sums in terms of the frequencies of weights in the codes. This is done via Pless power moment identity and by utilizing the explicit expressions of exponential sums over those double cosets related to the evaluations of “Gauss sum” for the symplectic groups Sp(2n, q).

Keywords: Kloosterman sum, symplectic group, double cosets, maximal parabolic subgroup, Pless power moment identity, weight distribution

  1. L. Carlitz, Gauss sums over finite fields of order 2n, Acta Arith. 15, 247-265, 1969.
  2. L. Carlitz, A note on exponential sums, Pacific J. Math. 30, 35-37, 1969.
  3. P. Charpin, T. Helleseth, V. Zinoviev, Propagation characteristics of x ↦ x−1, Finite Fields Appl. 13, 366-381, 2007.
  4. J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Inv. Math. 70, 219-288, 1982.
  5. H. Dobbertin, P. Felke, T. Helleset, P. Rosendahl, Niho type cross-correlation functions via Dickson polynomials and Kloosterman sums, IEEE Trans. Inf. Theory 52, 613-627, 2006.
  6. R.J.Evans, Seventh power moments of Kloosterman sums, Israel J. Math. 175, 349-362, 2010.
  7. K. Hulek, J. Spandaw, B. van Geemen, D. van Straten, The modu-larity of the Barth-Nieto quintic and its relatives, Adv. Geom. 1, 263-289, 2001.
  8. D. S. Kim, Gauss sums for symplectic groups over a finite field, Mh. Math. 126, 55-71, 1998.
  9. D. S. Kim, Codes associated with special linear groups and power moments of multi-dimensional Kloosterman sums, Ann. Mat. Pura Appl. 190, 61-76, 2011.
  10. D. S. Kim, Codes associated with O+(2n, 2r) and power moments of Kloosterman sums, Integers 12, 237-257, 2012.
  11. D. S. Kim, Codes associated with orthogonal groups and power moments of Kloosterman sums, J. Comb. Number Theory 3, 65-81, 2011.
  12. H. D. Kloosterman, On the representation of numbers in the form ax2 + by2 + cz2 + dt2, Acta. Math. 49, 407-464, 1926.
  13. G. Lachaud, J. Wolfmann, The weights of the orthogonals of the extended quadratic binary Goppa codes, IEEE Trans. Inform. Theory 36, 686-692, 1990.
  14. R. Lidl, H. Niederreiter, Finite Fields : Encyclopedia of Mathematics and Its Applications 20, 2nd ed., Cambridge University Press, Cambridge, 1997.
  15. R. Livné, Motivic orthogonal two-dimensional representations of Gal(\overline{\mathbb{Q}}/\mathbb{Q}), Israel J. Math. 92, 149-156, 1995.
  16. F. J. MacWilliams, N. J. A. Sloane, The Theory of Error Correcting Codes, North-Holland, Amsterdam, 1998.
  17. M. Moisio, The moments of a Kloosterman sum and the weight distribution of a Zetterberg-type binary cyclic code, IEEE Trans. Inform. Theory 53, 843-847, 2007.
  18. C. Peters, J. Top, M. van der Vlugt, The Hasse zeta function of a K3 surface related to the number of words of weight 5 in the Melas codes, J. Reine Angew. Math. 432, 151-176, 1992.
  19. H. Salié, Über die Kloostermanschen Summen \mathcal{S}(u,v;q), Math. Z. 34, 91-109, 1931.
  20. R. Schoof, M. van der Vlugt, Hecke operators and the weight distributions of certain codes, J. Combin. Theory Ser. A 57, 163-186, 1991.