Article ID: MTJPAM-D-19-00002


Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-19-00002; Volume 1 / Issue 2 / Year 2019, Pages 21-41

Document Type: Research Paper

Author(s): Dae San Kim a

aDepartment of Mathematics, Sogang University, Seoul 121-742, Korea

Received: 4 July 2019, Accepted: 4 December 2019, Available online: 28 December 2019.

Corresponding Author: Dae San Kim (Email address:

Full Text: PDF


In this paper, we construct four infinite families of ternary linear codes associated with double cosets in O(2n + 1, q) with respect to certain maximal parabolic subgroup of the special orthogonal group SO(2n + 1, q). Here q is a power of three. Then we obtain two infinite families of recursive formulas, the one generating the power moments of Kloosterman sums with “trace nonzero square arguments” and the other generating the even power moments of those. Both of these families are expressed in terms of the frequencies of weights in the codes associated with those double cosets in O(2n + 1, q) and in the codes associated with similar double cosets in the symplectic group Sp(2n, q). This is done via Pless power moment identity and by utilizing the explicit expressions of exponential sums over those double cosets related to the evaluations of “Gauss sums” for the orthogonal group O(2n + 1, q).

Keywords: power moment, Kloosterman sum, trace nonzero square argument, orthogonal group, symplectic group, double cosets, maximal parabolic subgroup, Pless power moment identity, weight distribution, Gauss sum

  1. R.J. Evans, Seventh power moments of Kloosterman sums, Israel J. Math. 175, 349-362, 2010.
  2. G. van der Geer, R. Schoof and M. van der Vlugt, Weight formulas for ternary Melas codes, Math. Comp. 58, 781-792, 1992.
  3. K. Hulek, J. Spandaw, B. van Geemen, D.van Straten, The modulartiy of the Barth-Nieto quintic and its relatives, Adv. Geom. 1, 263-289, 2001.
  4. N.E. Hurt, Exponential Sums and Coding Theory:A ReviewActa Appl. Math. 46, 49-91, 1997.
  5. D. S. Kim, Gauss sums for symplectic groups over a finite field, Mh. Math. 126, 55-71, 1998.
  6. D. S. Kim, Exponential sums for symplectic groups and their apllications, Acta Arith 88, 155-171, 1999.
  7. D. S. Kim, Gauss sums for O(2n + 1, q), Finite Fields Appl. 4, 62-86, 1998.
  8. D. S. Kim, Infinite families of recursive formulas generating power moments of ternaty Kloosterman sums with square arguments arising from symplectic groups, Adv. Math. Commun. 3, 167-178, 2009.
  9. D. S. Kim, Ternary codes associated with O(3, 3r) and power moments of Kloosterman sums with trace nonzero square arguments, Math. Commun. 17, 241-255, 2012.
  10. D. S. Kim, Infinite families of recursive formulas generating power moments of ternaty Kloosterman sums with square arguments associated with O(2n, q), J. Korean Math. Soc. 48 (2), 267-288, 2011.
  11. D. S. Kim, Recursive formulas generating power moments of Kloosterman sums: symplectic case, Montes Taurus J. Pure Appl. Math. 1 (1), 77-95, 2019.
  12. J.-Y. Kim, S.-T. Choi, J.-S. No, H. Chung, A New Family of p-ary Decimated Sequences with Low Correlation in Proc. of IEEE Int. Symp. Information Theory(ISIT2010) – Austin, TX, 1263-1267, 2010.
  13. H. D. Kloosterman, On the representation of numbers in the form ax2 + by2 + cz2 + dt2 , Acta Math. 49, 407-464, 1926.
  14. R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math.Appl. 20, Cambridge University Press, Cambridge, 1987.
  15. R. Livné, Motivic orthogonal two-dimensional representations of Gal(\overline{\mathbb{Q}}/\mathbb{Q}), Israel J. Math. 92, 149-156, 1995.
  16. F. J. MacWilliams, N. J. A. Sloane, The Theory of Error Correcting Codes, North-Holland, Amsterdam, 1998.
  17. M. Moisio, On the moments of Kloosterman sums and fibre products of Kloosterman curves, Finite Fields Appl. 14, 515-531, 2008.
  18. K. G. Paterson, Applications of Exponential Sums in Communications Theory, in Cryptography and Coding, 1-24, Michael Walker, ed., LNCS Vol. 1746, Springer, 1999.
  19. C. Peters, J. Top, M. van der Vlugt, The Hasse zeta function of a K3 surface related to the number of words of weight 5 in the Melas codes, J. Reine Angew. Math. 432, 151-176, 1992.
  20. H. Salié, Über die Kloostermanschen Summen \mathcal{S}(u,v;q), Math. Z. 34 91-109, 1931.