Article ID: MTJPAM-D-19-00004

Title: GENERAL SUMMATION FORMULAS FOR THE KAMPÉ DE FÉRIET FUNCTION


Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-19-00004; Volume 1 / Issue 1 / Year 2019, Pages 107-128

Document Type: Research Paper

Author(s): Junesang Choi a , Arjun K. Rathie b

aDepartment of Mathematics, Dongguk University, Gyeongju 38066, Republic of Korea

bDepartment of Mathematics, Vedant College of Engineering & Technology, Rajasthan Technical University Village: TULSI, Post: Jakhmund, District: BUNDI-323021, Rajasthan State, India

Received: 21 September 2019, Accepted: 27 October 2019, Available online: 28 November 2019.

Corresponding Author: Junesang Choi (Email address: junesang@dongguk.ac.kr)

Full Text: PDF


Abstract

Very recently by employing two well-known Euler’s transformations for the hypergeometric function, Liu and Wang established numerous general transformation formulas for the Kampé de Fériet function and deduced many new summation formulas for the Kampé de Fériet function by using classical summation theorems for the series 2F1 due to Kummer, Gauss and Bailey. Here, we aim to establish 176 interesting summation formulas for the Kampé de Fériet function in the form of 16 general summation formulas based on the transformation formulas due to Liu and Wang. The results are derived with the help of generalizations of Kummer’s summation theorem, Gauss’ second summation theorem and Bailey’s summation theorem established earlier by Lavoie et al. The 176 formulas for the Kampé de Fériet function are pointed out to contain 16 known formulas, which are also recalled as corollaries.

Keywords: Gamma function, Pochhammer symbol, Gauss’s hypergeometric function 2F1, Generalized hypergeometric function pFq, Kampé de Fériet function, Generalization of Kummer’s summation theorem, Generalization of Gauss’ second summation theorem, Generalization of Bailey’s summation theorem

References:
  1. P. Appell, J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphérique Polyn\hat{\rm o}mes d’Hermité, Gauthiers Villars, Paris, 1926.
  2. W.N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935; Reprinted by Stechert Hafner, New York, 1964.
  3. Yu.A. Brychkov, Handbook of Special Functions, Derivatives, Integrals, Series and Other Formulas, CRC Press, Taylor & Fancis Group, Boca Raton, London, New York, 2008.
  4. J.L. Burchnall, T.W. Chaundy, Expansions of Appell’s double hypergeometric functions, Quart. J. Math. (Oxford ser.) 11, 249-270, 1940.
  5. J.L. Burchnall, T.W. Chaundy, Expansions of Appell’s double hypergeometric functions (II), Quart. J. Math. (Oxford ser.) 12, 112-128, 1941.
  6. R.G. Buschman, H.M. Srivastava, Some identities and reducibility of Kampé de Fériet functions, Math. Proc. Cambridge Philos. Soc. 91 435-440, 1982.
  7. L. Carlitz, Summation of a double hypergeometric series, Mathematiche (Catania) 22, 138-142, 1967.
  8. W.-C.C. Chan, K.-Y. Chen, C.-J. Chyan, H.M. Srivastava, Some multiple hypergeometric transformations and associated reduction formulas, J. Math. Anal. Appl. 294, 418-437, 2004.
  9. K.-Y. Chen, H.M. Srivastava, Series identities and associated families of generating functions, J. Math. Anal. Appl. 311, 582-599, 2005.
  10. W.-C. Chen, H.M. Srivastava, Ordinary and basic bivariate hypergeometric transformations associated with the Appell and Kampé de Fériet functions, J. Comput. Appl. Math. 156, 355-370, 2003.
  11. J. Choi, A.K. Rathie, On the reducibility of Kampé De Fériet function, Honam Math. J. 36 (2) 345-355, 2014.
  12. J. Choi, A.K. Rathie, Reducibility of Kampé de Fériet function, Appl. Math. Sci. 9 (85) 4219-4232, 2015.
  13. C. Cvijovic, R. Miller, A reduction formula for the Kampé de Fériet function, Appl. Math. Lett. 23, 769-771, 2010.
  14. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill Book Company, New York, Toronto and London, 1953.
  15. H. Exton, Multiple Hypergeometric Functions, Halsted Press, New York, 1976.
  16. H. Exton, On the reducibility of the Kampé de Fériet function, J. Comput. Appl. Math. 83, 119-121, 1997.
  17. P. Humbert, The confluent hypergeometric functions of two variables, Proc. Roy. Soc. Edinburgh 4 (1), 73-96, 1920-21.
  18. R.N. Jain, Sum of a double hypergeometric series, Mathematiche (Catania), 21, 300-301, 1966.
  19. J. Kampé de Fériet, Les fonctions hypergéometriques of ordre supérieur \check{\rm a} deux variables, C. R. Acad. Sci., Paris 173, 401-404, 1921.
  20. P.W. Karlsson, Some reduction formulas for double series and Kampé de Fériet functions, Nederl. Akad. Wetensch. Indag Math., 46, 87 (1), 31-36, 1984.
  21. Y.S. Kim, On certain reducibility of Kampé de Fériet function, Honam Math. J. 31 (2), 167-176, 2009.
  22. Y.S. Kim, M.A. Rakha, A.K. Rathie, Extensions of certain classical summation theorems for the series 2F1, 3F2 and 4F3 with applications in Ramanujan’s summations, Int. J. Math. Math. Sci., Article ID 309503, 26 pages, 2010.
  23. E.D. Kurprikov, A register of computer oriented reduction of identities for Kampé De Fériet function, Novosibirsk, Russia, 1996.
  24. J.L. Lavoie, F. Grondin, A.K. Rathie, Generalizations of Watson’s theorem on the sum of a 3F2, Indian J. Math. 34 (2), 23-32, 1992.
  25. J.L. Lavoie, F. Grondin, A.K. Rathie, K. Arora, Generalizations of Dixon’s theorem on the sum of a 3F2, Math. Comput. 62, 267-276, 1994.
  26. J.L. Lavoie, F. Grondin, A.K. Rathie, Generalizations of Whipple’s theorem on the sum of a 3F2, J. Comput. Appl. Math. 72, 293-300, 1996.
  27. H. Liu, W. Wang, Transformation and summation formulae for Kampé de Fériet series, J. Math. Anal. Appl. 409, 100-110, 2014.
  28. A.R. Miller, On a Kummer-type transformation for the generalized hypergeometric function 2F2, J. Comput. Appl. Math. 157 (2), 507-509, 2003.
  29. E.D. Rainville, Special Functions, Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.
  30. M.A. Rakha, M.M. Awad, A.K. Rathie, On a reducibility of the Kampé de Fériet function, Math. Methods Appl. Sci. 38, 2600-2605, 2015.
  31. M.A. Rakha, A.K. Rathie, Generalizations of classical summation theorems for the series 2F1 and 3F2 with applications, Integral Transforms Spec. Funct. 22 (11), 823-840, 2011.
  32. K.S. Rao, Vonder Jeugt, Stretched g − j coefficeients and summation theorems, J. Phys. A: Math. Gen. 27, 3083-3090, 1994.
  33. S. Saran, Reducibility of generalized Kampé de Fériet function, Ganita 31, 89-98, 1980.
  34. O. Shankar, S. Saran, Reducibility of Kampé de Fériet function, Ganita 21 (1), 9-16, 1970.
  35. B.L. Sharma, Sum of a double series, Proc. Amer. Math. Soc. 52, 136-138, 1975.
  36. B.L. Sharma, A note on hypergeometric functions of two variables, Nederl. Akad. Wetensch. Proc. Ser. A 79 = Indag Math. 38, 41-45, 1976.
  37. R.P. Singhal, Transformation formulas for the modified Kampé de Fériet function, Math. Student 39, 327-329, 1972.
  38. L.J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.
  39. H.M. Srivastava, The sum of a multiple hypergeometric series, Nederl. Akad. Wetensch. Proc. Ser. A 80 = Indag Math. 39, 448-452, 1977.
  40. H.M. Srivastava, J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
  41. H.M. Srivastava, M.C. Daoust, A note on the convergence of Kampé de Fériet’s double hypergeometric series, Math. Nachr. 53, 151-159, 1985.
  42. H.M. Srivastava, P.W. Karlsson, Multiple Gaussian hypergeometric Series, Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1985.
  43. H.M. Srivastava, H.L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.
  44. H.M. Srivastava, R. Panda, An integral representation for the product of two Jacobi polynomials, J. London Math. Soc. (2) 12, 419-425, 1976.
  45. J. Van der jeugt, Transformation formula for a double Clausenian hypergeometric series, its q-analogue and its invariant group, J. Comput. Appl. Math. 139, 65-73, 2002.
  46. J. Van der jeugt, S.N. Pitre, K.S. Rao, Multiple hypergeometric functions and g − j coefficients, J. Phys. A: Math. Gen. 27, 5251-5264, 1994.
  47. J. Van der jeugt, S.N. Pitre, K.S. Rao, Multiple hypergeometric functions and g − j coefficients, J. Phys. A: Math. Gen. 27, 5251-5264, 1994.
  48. J. Van der jeugt, S.N. Pitre, K.S. Rao, Transformation and summation formulas for double hypergeometric series, J. Comput. Appl. Math. 83 , 185-193, 1997.