Article ID: MTJPAM-D-20-00004

Title: On Ulam-Hyers-Rassias Stability for Mild Solutions of a Two-time Dynamical System


Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-20-00004; Volume 2 / Issue 1 / Year 2020, Pages 69-80

Document Type: Research Paper

Author(s): Mohamed Akkouchi a , Mohamed Amine Ighachane b , My, Hicham, Lalaoui Rhali c

aDepartment of Mathematics, Faculy of Sciences-Semlalia, University Cadi Ayyad, Av. Prince My. Abdellah, BP: 2390, Marrakesh (40.000-Marrakech), Morocco (Maroc)

bDepartment of Mathematics, Faculy of Sciences-Semlalia, University Cadi Ayyad, Av. Prince My. Abdellah, BP: 2390, Marrakesh (40.000-Marrakech), Morocco (Maroc)

cDepartment of Mathematics, Faculy of Sciences-Semlalia, University Cadi Ayyad, Av. Prince My. Abdellah, BP: 2390, Marrakesh (40.000-Marrakech), Morocco (Maroc)

Received: 13 February 2020, Accepted: 26 March 2020, Available online: 9 May 2020.

Corresponding Author: Mohamed Akkouchi (Email address: akkm555@yahoo.fr)

Full Text: PDF


Abstract

In this work, we introduce the concept of mild solution for an abstract Cauchy problem of non-homogeneous type governed by the generator of a two-parameter C0-semigroup on a real or complex Banach space X. Precisely we are concerned by the following two-time dynamical system:

(ACP(2)): \begin{cases} \frac{\partial\psi(s,t)}{\partial s} =A_{1}\psi(s,t)+u_{1}(s,t)F_{1}(s,\psi(s,t)),\,\, \\ \frac{\partial\psi(s,t)}{\partial t} =A_{2}\psi(s,t)+u_{2}(s,t)F_{2}(t,\psi(s,t)),\,\, \\ \psi(s_{0},t_{0})=x_{0}\in X, \end{cases}

for all (s, t)∈[s0, S]×[t0, T], where s0 ≤ S ≤ +∞ and t0 ≤ T ≤ +∞. Under certain conditions on the functions u1, u2, F1 and F2, we investigate the generalized stability in the sense of Ulam, Hyers and Rassias of these mild solutions. Our approach to stablity is based on the fixed point method.

Keywords: Two-parameter semigroups, Two-time dynamical systems, Mild solutions, Stability, Ulam-Hyers-Rassias

References:
  1. M. Akkouchi, A. Bounabat, M.H. Lalaoui Rhali, Fixed point approch to the stability of an integral equation in the sense of Ulam-Hyers-Rassias, Annales Mathematicae silesianae 25, 27-44, 2011.
  2. M. Akkouchi, Stability of certain functional equations via a fixed point of Ćirić, Filomat 25 (2), 121-127, 2011.
  3. M. Akkouchi, M. Houimdi, M. H. Lalaoui Rhali, A Theoretical Framework for Two-Parameter Semigroup, Gulf Journal Of Mathematics 7 (1), 1-17, 2019.
  4. S.M. A. Alsulami, On evolution equations in Banach spaces and commuting semigroups, Mathematics, Ph. Dissertation. Ohio University, June 2005, (102 pp).
  5. J.A. Baker, The stability of certain functional equations, Proc. Amer. Math. Soc. 112 (3), 729-732, 1991.
  6. J. Brzdȩk, J. Chudziak and Zs. Páles, A fixed point approach to the stability of functional equations, Nonlinear Anal. 74 (17), 6728-6732, 2011.
  7. J. Brzdȩk, L. Cadariu, and K. Ciepliński, Fixed Point Theory and the Ulam Stability, Journal of Function Spaces. Volume 2014, Article ID 829419, 16 pages.
  8. L.P. Castro, A. Ramos, A. Hyers–Ulam-Rassias stability for a class of nonlinear Volterra integral equations, Banach J. Math. Anal. 3 (1), 36-43, 2009.
  9. L. Cădariu, M.S. Moslehian, V. Radu, An application of Banach’s fixed point theorem to the stability of a general functional equation, An. Univ. Vest Timiş. Ser. Mat.-Inform. 47 (3), 21-26, 2009.
  10. L. Cădariu, V. Radu, A general fixed point method for the stability of Cauchy functional equation, Functional equations in mathematical analysis, Springer, New York, 19-32, 2012.
  11. K. Ciepliński, Applications of fixed point theorems to the Hyers–Ulam stability of functional equations-a survey, Ann. Funct. Anal. 3 (1), 151-164, 2012.
  12. J.B. Diaz, B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74, 305-309, 1968.
  13. D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA. 27, 222-224, 1941.
  14. D.H. Hyers, The stability of homomorphisms and related topics, in: Global Analysis – Analysis on Manifolds (Th.M. Rassias, ed.), Teubner – Texte Math., B. 57, Teubner, Leipzig, 1983, pp. 140-153.
  15. D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equation in Serval Variables, Birkhäuser, Basel, 1998.
  16. S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order. II, Math. Lett. 19 (9), 854-858, 2006.
  17. S.-M. Jung, Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients, J. Math. Anal. Appl. 320 (2), 549-561, 2006.
  18. V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (1), 91-96, 2003.
  19. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72, 297-300, 1978.
  20. Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251, 264-284, 2000.
  21. Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic, Dordrecht, Boston and London, 2003.
  22. I.A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math. 26 (1), 103-107, 2010.
  23. S.M. Ulam, Problems in Modern Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1960.
  24. S.M. Ulam, A collection of the Mathematical Problems, Interscience Publ., New York, 1960.