**Title:** On *p*-Valent Strongly Starlike and Strongly Convex Functions Associated with Generalized Linear Operator

**Montes Taurus J. Pure Appl. Math.** / ISSN: 2687-4814

**Article ID:** MTJPAM-D-20-00023; **Volume 3 / Issue 3 / Year 2021 (Special Issue)**, Pages 104-111

**Document Type:** Research Paper

**Author(s):** Mohamed Kamal Aouf ^{a} , Sheza M. El-Deeb ^{b}

^{a}Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

^{b}Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt. Current Address: Department of Mathematics, College of Science and Arts, Al-Badaya, Qassim University, Buraidah 51452, Saudi Arabia

Received: 11 August 2020, Accepted: 1 December 2020, Published: 25 April 2021.

**Corresponding Author:** Sheza M. El-Deeb (Email address: shezaeldeeb@yahoo.com)

**Full Text:** PDF

**Abstract**

In this paper, we define some new subclasses and of strongly starlike and strongly convex functions of order and type by using the generalized linear operator . We also derive some interesting properties, such as inclusion relationships of these classes and the integral operator .

**Keywords:** Analytic functions, *p*-valent, Strongly starlike, Strongly convex

**References:**

- F. M. Al-Oboudi,
*On univalent functions defined by a generalized Salagean operator*, Internat. J. Math. Math. Sci.**27**, 1429-1436, 2004. - M. K. Aouf,
*Some inclusion relationships associated with the Komatu integral operator*, Math. Comput. Modelling**50**, 1360-1366, 2009. - M. K. Aouf,
*The Komatu integral operator and strongly close-to-convex functions*, Bull. Math. Anal. Appl.**3 (3)**, 209-219, 2011. - M . K. Aouf, R. M. El-Ashwah and S. M. El-Deeb,
*Some inequalities for certain*, Proc. Pakistan Acad. Sci.*p*-valent functions involving an extended multiplier transformations**46 (4)**, 217-221, 2009. - M. K. Aouf and H.M. Hossen,
*New criteria for meromorphic*, Tsukuba J. Math.*p*-valent starlike functions**50 (17)**, 481-486, 1993. - S. D. Bernardi,
*Convex and starlike univalent functions*, Trans. Amer. Math. Soc.**135**, 429-446, 1969. - J. H. Choi, M. Saigo and H. M. Srivastava,
*Some inclusion properties of a certain family of integral operators*, J. Math. Anal. Appl.**276**, 432-445, 2002. - A. Ebadian and S. Najafzadeh,
*Uniformly starlike and convex univalent functions by using certain integral operator*, Acta Univ. Apulensis**20**, 17-23, 2009. - A. Ebadian, S. Shams, Z. G. Wang and Y. Sun,
*A class of multivalent analytic functions involving the generalized Jung-Kim-Srivastava operator*, Acta Univ. Apulensis**18**, 265-277, 2009. - R. M. El-Ashwah, M . K. Aouf and S. M. El-Deeb,
*Differential subordination for certian subclasses of*, J. Math. Art. ID692045, 1-8, 2013.*p*-valent functions assoicated with generalized linear operator - A. W. Goodman,
*On the Schwarz Christoffel transformation and p-valent functions*, Trans. Amer. Math. Soc.**68**, 204-233, 1950. - S. M. Khairnar and M. More,
*On a subclass of multivalent*, IAENG Int. J. Appl. Math.*β*-uniformly starlike and convex functions defined by a linear operator**39 (3)**, 1-9, 2009. - N. Khan, Q. Z. Ahmad, T. Khalid and B. Khan,
*Results on spirallike p-valent functions*, AIMS Math.**1**, 12-20, 2017. - B. Khan, Z.-G. Liu, H. M. Srivastava, N. Khan, M. Darus and M. Tahir,
*A study of some families of multivalent*, Mathematics*q*-starlike functions involving higher-order*q*-derivatives**8**, Art. ID 1470, 1-12, 2020. - Y. Komatu,
*On analytic prolongation of a family of integral operators*, Math. (Cluj)**32 (55)**, 141-145, 1990. - T. Y. Lam,
*A First Course in Noncommutative Rings*, Springer-Verlag, New York, 1991. - C. P. Lu,
*Prime submodules of modules*, Comment. Math. Univ. St. Pauli**33 (1)**, 61-69, 1984. - A. Muhammad,
*On p-valent strongly starlike and strongly convex functions*, Acta Univ. Apulensis**26**, 17-188, 2011. - M. Nunokawa,
*On the order of strongly starlikeness of strongly convex functions*, Proc. Japan Acad.Ser. A Math. Sci.**69 (7)**, 234-237, 1993. - M. Nunokawa, S. Owa and A. Ikeda,
*On the strongly starlikeness of multivalently convex functions of order*, Hindawi Publishing Corp. 51-55, 2001.*α* - M. Nunokawa, S. Owa, H. Saitoh and A. Ikeda,
*Some results for strongly starlike functions*, J. Math. Anal. Appl.**212**, 98-106, 1997. - M. Obradovic and S. B. Joshi,
*On certain classes of strongly starlike functions*, Taiwan.J. Math.**2**, 297-302, 1998. - S. Owa,
*On certain classes of*, Bull. Belg. Math. Soc. Simon Stevin*p*-valent functions with negative coefficients**59**, 385-402, 1985. - D. A. Patel and N. K. Thakare,
*On convex hulls and extreme points of*, Bull. Math. Soc. Sci. Math. Roumanie (N.S)*p*-valent starlike and convex classes with applications**27**, 145-160, 1983. - J. K. Prajapat and S. P. Goyal,
*Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions*, J. Math. Inequal.**3 (1)**, 129-137, 2009. - R. K. Raina and I. B. Bapna,
*On the starlikeness and convexity of a certain integral operator*, Southeast Asian Bull. Math.**33**, 101-108, 2009. - G. S. Salagean,
*Subclasses of univalent functions*, Lecture Notes in Math. ( Springer-Verlag )**1013**, 362-372, 1983. - S. Shams, S. R. Kulkarni and J. M. Jahangiri,
*Subordination properties for*, Internat. J. Math. Math. Sci. Art. ID94572, 1-3, 2006.*p*-valent functions defined by integral operator - H. M. Srivastava,
*Operators of basic (or q-) calculus and fractional*, Iran. J. Sci. Technol. Trans. A: Sci.*q*-calculus and their applications in geometric function theory of complex analysis**44**, 327-344, 2020. - H. M. Srivastava, Q. Z. Ahmad, N. Khan, S. Kiran and B. Khan,
*Some applications of higher order derivatives involving certain subclasses of analytic and multivalent functions*, J. Nonlinear Var. Anal.**2**, 343-353, 2018. - H. M. Srivastava, M. K. Aouf and A. O. Mostafa,
*Some properties of analytic functions associated with fractional*, Miskolc Math. Notes*q*-calculus operators**20**, 1245-1260, 2019. - H. M. Srivastava and S. M. El-Deeb,
*A certain class of analytic functions of complex order connected with a*, Miskolc Math. Notes*q*-analogue of integral operators**21**, 417-433, 2020.