Article ID: MTJPAM-D-20-00028

Title: On The Weighted Variable Exponent Lorentz Spaces

Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-20-00028; Volume 3 / Issue 1 / Year 2021, Pages 78-88

Document Type: Research Paper

Author(s): Öznur Kulak a

aAmasya University, Department of Mathematics, Amasya, Turkey

Received: 11 September 2020, Accepted: 8 November 2020, Available online: 7 January 2021.

Corresponding Author: Öznur Kulak (Email address:

Full Text: PDF


In this paper, using measure wdm instead of Haar measure m, weighted variable exponent Lorentz space is introduced and investigated. Then Hölder inequality is proved for weighted variable exponent Lorentz spaces. Also boundedness of the bilinear Hardy-Littlewood maximal function and Littlewood-Paley square function is considered on these spaces.

Keywords: Weighted variable exponent Lorentz space, Bilinear Hardy-Littlewood maximal, Bilinear Littlewood-Paley square function

  1. I. Assani and Z. Buczolich, The (L1, L1) bilinear Hardy-Littlewood function and furstenberg averages, Rev Mat Iberoamericana 26 (3), 861-890, 2010.
  2. C. Bennett and R. Sharpley, Interpolation of operators, Academic Press, Boston, 1988.
  3. F. Bernicot, Lp estimates for non smooth bilinear Littlewood-Paley square functions on R, Math. Ann. 351 (1), 1-49, 2011.
  4. M.J. Carro and E. Roure, Weighted boundedness of the 2-fold product of Hardy-Littlewood maximal operators, Math. Nachr. 291, 1208-1215, 2018.
  5. L. Ephremidze, V. Kokilashvili and S. Samko, Fractional, maximal and singular operators in variable exponent Lorentz spaces, Fract. Calc. Appl. Anal. 11 (4), 1-14, 2008.
  6. R. Hunt, On L(p,q) spaces, Extrait de L’Enseignement Mathematique TXII 4, 249-276, 1966.
  7. H. Kempka and J. Vybiral, Lorentz spaces with variable exponents, Math. Nachr. 287, 8-9, 2014.
  8. Ö. Kulak, The inclusion theorems for variable exponent Lorentz spaces,Turk J. Math. 40, 605-619, 2016.
  9. Ö. Kulak, Boundedness of bilinear Littlewood-Paley square function on variable Lorentz spaces, AIP Conference Proceedings 1863, 300022-1-300022-4, 2017.
  10. Ö. Kulak, The bilinear Hardy-Littlewood maximal function and Littlewood-Paley square function on weighted variable exponent Wiener amalgam space, Çankaya University Journal of Science and Engineeringi 16 (1), 063-080, 2019.
  11. M.T. Lacey, On bilinear Littlewood-Paley square functions, Publ. Math.40 (2), 387-396, 1996.
  12. M.T. Lacey, The bilinear maximal fuctions map into Lp for$ \frac{2}{3}<p\leq1$, Ann. Math. 151, 35-37, 2000.
  13. P. Mohanty and S. Shrivastava, A note on the bilinear Littlewood-Paley square function, Proc. Amer. Math. Soc. 138 (6), 2095-2098, 2010.
  14. J.L. Rubio de Francia, Estimates for some square functions of Littlewood-Paley type, Publ. Sec. Mat. 27 (2), 81-108, 1983.
  15. J.L. Rubio de Francia, A Littlewood-Paley inequalty for arbitrary intervals, Rev Mat Iberoamericana 1 (2), 1-14, 1985.
  16. W. Rudin, Real and Complex Analysis, Mc Graw-Hill Book Company, New York, 1966.
  17. S.G. Samko, Convolution type operators in Lp(x), Integral Transform Spec. Funct. 7, 123-144, 1998.
  18. L. Schwartz, Mathematics for The Physical Science, Addison-Wesley Publishing Company, Paris, 1966.