Article ID: MTJPAM-D-20-00033

Title: Analogues of Faulhaber’s Formula for Poly-Bernoulli and Type 2 Poly-Bernoulli Polynomials


Article ID: MTJPAM-D-20-00033; Volume 3 / Issue 1 / Year 2021, Pages 1-6

Document Type: Research Paper

Author(s): Taekyun Kim a , Dae San Kim b , Jongkyum Kwon c

aDepartment of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea

bDepartment of Mathematics, Sogang University, Seoul 121-742, Republic of Korea

cDepartment of Mathematics Education, Gyeongsang National University, Jinju 52828, Republic of Korea

Received: 9 October 2020, Accepted: 28 October 2020, Available online: 7 January 2021.

Corresponding Author: Jongkyum Kwon (Email address: mathkjk26@gnu.ac.kr)

Full Text: PDF


Abstract

Faulhaber’s formula expresses sums of powers of consecutive integers in terms of Bernoulli polynomials. Here we would like to find analogous ones to the Faulhaber’s formula for poly-Bernoulli and type 2 poly-Bernoulli polynomials.

Keywords: Analogues of Faulhaber’s formula, Poly-Bernoulli polynomials, Type 2 poly-Bernoulli polynomials

References:
  1. C. Adiga, N. A. S. Bulkhali, D. Ranganatha and H. M. Srivastava, Some new modular relations for the Rogers-Ramanujan type functions of order eleven with applications to partitions, J. Number Theory 158, 281–297, 2016.
  2. G. E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, London and New York, 1998.
  3. J. Ewell, On sums of consecutive k-th powers, k = 1, 2, Math. Mag. 48 (4), 203-207, 1975.
  4. C. Ho, G. Mellblom, M. Frodyma, On the Sum of Powers of Consecutive Integers, College Math. J. 51 (4), 295-301, 2020.
  5. M. Kaneko, Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux 9 (1), 221-228, 1997.
  6. D.S. Kim, T. Kim, A note on polyexponential and unipoly functions, Russ. J. Math. Phys. 26 (1), 40–49, 2019.
  7. T. Kim, Sums of powers of consecutive q -integers, Adv. Stud. Contemp. Math. (Kyungshang) 9 (1), 15-18, 2004.
  8. T. Kim, D.S. Kim, Degenerate polyexponential functions and degenerate Bell polynomials, J. Math. Anal. Appl. 487 (2), 124017 (15 pp), 2020.
  9. T. Kim, D.S. Kim, H.-Y. Kim, H. Lee, L.-C. Jang, Degenerate poly-Bernoulli polynomials arising from degenerate polylogarithm, Adv. Difference Equ. 2020 (444), 9 pp, 2020.
  10. T. Kim, D.S. Kim, J. Kwon, H. Lee, Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials, Adv. Difference Equ. 2020 (168), 12 pp, 2020.
  11. A. Kudo, A congruence of generalized Bernoulli number for the character of the first kind, Adv. Stud. Contemp. Math. (Kyungshang) 2, 1-8, 2000.
  12. Y. Simsek, Complete sum of products of (h,q) -extension of Euler polynomials and numbers, J. Difference Equ. Appl. 16 (11), 1331-1348, 2010.
  13. L. Lewin, Polylogarithms and Associated Functionss, North-Holland, New York, 1981.
  14. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Chapter: 23: Bernoulli and Euler Polynomials and the Euler-Maclaurin Formula, Dover, New York, 1972.