Title: Analogues of Faulhaber’s Formula for Poly-Bernoulli and Type 2 Poly-Bernoulli Polynomials
Article ID: MTJPAM-D-20-00033; Volume 3 / Issue 1 / Year 2021, Pages 1-6
Document Type: Research Paper
Author(s): Taekyun Kim a , Dae San Kim b , Jongkyum Kwon
c
aDepartment of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
bDepartment of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
cDepartment of Mathematics Education, Gyeongsang National University, Jinju 52828, Republic of Korea
Received: 9 October 2020, Accepted: 28 October 2020, Available online: 7 January 2021.
Corresponding Author: Jongkyum Kwon (Email address: mathkjk26@gnu.ac.kr)
Full Text: PDF
Abstract
Faulhaber’s formula expresses sums of powers of consecutive integers in terms of Bernoulli polynomials. Here we would like to find analogous ones to the Faulhaber’s formula for poly-Bernoulli and type 2 poly-Bernoulli polynomials.
Keywords: Analogues of Faulhaber’s formula, Poly-Bernoulli polynomials, Type 2 poly-Bernoulli polynomials
References:- C. Adiga, N. A. S. Bulkhali, D. Ranganatha and H. M. Srivastava, Some new modular relations for the Rogers-Ramanujan type functions of order eleven with applications to partitions, J. Number Theory 158, 281–297, 2016.
- G. E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, London and New York, 1998.
- J. Ewell, On sums of consecutive k-th powers, k = 1, 2, Math. Mag. 48 (4), 203-207, 1975.
- C. Ho, G. Mellblom, M. Frodyma, On the Sum of Powers of Consecutive Integers, College Math. J. 51 (4), 295-301, 2020.
- M. Kaneko, Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux 9 (1), 221-228, 1997.
- D.S. Kim, T. Kim, A note on polyexponential and unipoly functions, Russ. J. Math. Phys. 26 (1), 40–49, 2019.
- T. Kim, Sums of powers of consecutive q -integers, Adv. Stud. Contemp. Math. (Kyungshang) 9 (1), 15-18, 2004.
- T. Kim, D.S. Kim, Degenerate polyexponential functions and degenerate Bell polynomials, J. Math. Anal. Appl. 487 (2), 124017 (15 pp), 2020.
- T. Kim, D.S. Kim, H.-Y. Kim, H. Lee, L.-C. Jang, Degenerate poly-Bernoulli polynomials arising from degenerate polylogarithm, Adv. Difference Equ. 2020 (444), 9 pp, 2020.
- T. Kim, D.S. Kim, J. Kwon, H. Lee, Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials, Adv. Difference Equ. 2020 (168), 12 pp, 2020.
- A. Kudo, A congruence of generalized Bernoulli number for the character of the first kind, Adv. Stud. Contemp. Math. (Kyungshang) 2, 1-8, 2000.
- Y. Simsek, Complete sum of products of (h,q) -extension of Euler polynomials and numbers, J. Difference Equ. Appl. 16 (11), 1331-1348, 2010.
- L. Lewin, Polylogarithms and Associated Functionss, North-Holland, New York, 1981.
- M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Chapter: 23: Bernoulli and Euler Polynomials and the Euler-Maclaurin Formula, Dover, New York, 1972.