Title: Fekete-Szegö Inequalities for Certain Subclasses of Analytic Functions Related with Leaf-Like Domain
Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814
Article ID: MTJPAM-D-20-00042; Volume 3 / Issue 3 / Year 2021 (Special Issue), Pages 305-316
Document Type: Research Paper
Author(s): Gangadharan Murugusundaramoorthy a
aSchool of Advanced Science, Vellore Institute of Technology, Deemed to be University, Vellore – 632014, India
Received: 27 November 2020, Accepted: 29 March 2021, Published: 25 April 2021.
Corresponding Author: Gangadharan Murugusundaramoorthy (Email address: gmsmoorthy@yahoo.com)
Full Text: PDF
Abstract
The purpose of this paper is to consider coefficient estimates in a
class of functions consisting of analytic
functions
normalized by
in the open unit disk Δ = {z : z ∈ ℂ and |z| < 1} subordinating with leaf like domain,
to derive certain coefficient estimates a2, a3 and Fekete-Szegö inequality for
. A similar results have been done for the function
. Further application of our results to certain functions defined by convolution products with a normalized
functions analytic is given, and in particular we obtain
Fekete-Szegö inequalities for certain
subclasses of functions defined through Poisson distribution series.
Keywords: Analytic functions, Starlike functions, Convex functions, Subordination, Fekete-Szegö inequality, Poisson distribution series, Hadamard product
References:- S. M. El-Deeb and T. Bulboacă, Fekete-Szegö inequalities for certain class of analytic functions connected with q-anlogue of Bessel function, J. Egyptian. Math. Soc. 27 (42), 1-11, 2019, https://doi.org/10.1186/s42787-019-0049-2.
- D. Guo and M-S. Liu, On certain subclass of Bazilevič functions, J. Inequal. Pure Appl. Math. 8 (1), Article 12, 1-11, 2007.
- U. Grenander and G.Szegö, Toeplitz Forms and Their Applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley, 1958.
- F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20, 8-12, 1969.
- B. Kowalczyk, A. Lecko and H. M. Srivastava, A note on the Fekete-Szegö problem for close-to-convex functions with respect to convex functions, Publ. Inst. Math. (Beograd) (Nouvelle Sér.) 101 (115), 143-149, 2017.
- R. J. Libera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (2), 225-230, 1982.
- W. Ma and D. Minda, A Unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang, and S. Zhang(Eds.), Int. Press, 157-169, 1994.
- G. Murugusundaramoorthy, Subclasses of starlike and convex functions involving Poisson distribution series, Afr. Mat. 28, 1357-1366, 2017.
- G. Murugusundaramoorthy and T. Bulboacă, Hankel determinants for new subclasses of analytic functions related to a shell shaped region, Mathematics 8, 1041, 2020.
- G. Murugusundaramoorthy, K. Vijaya and S. Porwal, Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series, Hacettepe J. Math. Stat. 45 (4), 1101-1107, 2016.
- S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39, 1057-1077, 1987.
- S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal. Art. ID 984135, 1-3, 2014.
- S. Porwal and M. Kumar, A unified study on starlike and convex functions associated with Poisson distribution series, Afr. Mat. 27, 1021-1027, 2016.
- R. K. Raina and J. Sokol, On coeffcient estimates for a certain class of starlike functions, Hacettepe Journal of Math. and Stat. 44 (6), 1427-1433, 2015.
- R. B. Sharma and M. Haripriya, On a class of a-convex functions subordinate to a shell shaped region, J. Anal. 25, 93-105, 2016, DOI10.1007/s41478-017-0031-z.
- J. Sokol and D. K. Thomas, Further results on a class starlike functions related to the Bernoulli lemniscate, Houston J. Math. 44, 83-95, 2018.
- H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci. 44, 327-344, 2020.
- H. M. Srivastava, S. Hussain, A. Raziq and M. Raza, The Fekete-Szegö functional for a subclass of analytic functions associated with quasi-subordination, Carpathian J. Math. 34, 103-113, 2018.
- H. M. Srivastava, N. Khan, M. Darus, S. Khan, Q. Z. Ahmad and S. Hussain, Fekete-Szegö type problems and their applications for a subclass of q-starlike functions with respect to symmetrical points, Mathematics 8, 842, 1-18, 2020.
- H. M. Srivastava, A. K. Mishra and M. K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Variables Theory Appl. 44 (2), 145-163, 2001.
- H. M. Srivastava, A. O. Mostafa, M. K. Aouf and H. M. Zayed, Basic and fractional q-calculus and associated Fekete-Szegö problem for p-valently q-starlike functions and p-valently q-convex functions of complex order, Miskolc Math. Notes 20, 489-509, 2019.
- H. M. Srivastava, N. Raza, E. S. A. AbuJarad, G. Srivastava and M. H. AbuJarad, Fekete-Szegö inequality for classes of (p, q)-starlike and (p, q)-convex functions, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. (RACSAM) 113, 3563-3584, 2019.