**Title:** Fekete-Szegö Inequalities for Certain Subclasses of Analytic Functions Related with Leaf-Like Domain

**Montes Taurus J. Pure Appl. Math.** / ISSN: 2687-4814

**Article ID:** MTJPAM-D-20-00042; **Volume 3 / Issue 3 / Year 2021 (Special Issue)**, Pages 305-316

**Document Type:** Research Paper

**Author(s):** Gangadharan Murugusundaramoorthy ^{a}

^{a}School of Advanced Science, Vellore Institute of Technology, Deemed to be University, Vellore – 632014, India

Received: 27 November 2020, Accepted: 29 March 2021, Published: 25 April 2021.

**Corresponding Author:** Gangadharan Murugusundaramoorthy (Email address: gmsmoorthy@yahoo.com)

**Full Text:** PDF

**Abstract**

The purpose of this paper is to consider coefficient estimates in a
class of functions consisting of analytic
functions normalized by in the open unit disk *Δ* = {*z* : *z* ∈ ℂ and |*z*| < 1} subordinating with leaf like domain,
to derive certain coefficient estimates *a*_{2}, *a*_{3} and Fekete-Szegö inequality for . A similar results have been done for the function . Further application of our results to certain functions defined by convolution products with a normalized
functions analytic is given, and in particular we obtain
Fekete-Szegö inequalities for certain
subclasses of functions defined through Poisson distribution series.

**Keywords:** Analytic functions, Starlike functions, Convex functions, Subordination, Fekete-Szegö inequality, Poisson distribution series, Hadamard product

**References:**

- S. M. El-Deeb and T. Bulboacă,
*Fekete-Szegö inequalities for certain class of analytic functions connected with q-anlogue of Bessel function*, J. Egyptian. Math. Soc.**27 (42)**, 1-11, 2019, https://doi.org/10.1186/s42787-019-0049-2. - D. Guo and M-S. Liu,
*On certain subclass of Bazilevič functions*, J. Inequal. Pure Appl. Math.**8 (1)**, Article 12, 1-11, 2007. - U. Grenander and G.Szegö,
*Toeplitz Forms and Their Applications, California Monographs in Mathematical Sciences*, University of California Press, Berkeley, 1958. - F. R. Keogh and E. P. Merkes,
*A coefficient inequality for certain classes of analytic functions*, Proc. Amer. Math. Soc.**20**, 8-12, 1969. - B. Kowalczyk, A. Lecko and H. M. Srivastava,
*A note on the Fekete-Szegö problem for close-to-convex functions with respect to convex functions*, Publ. Inst. Math. (Beograd) (Nouvelle Sér.)**101 (115)**, 143-149, 2017. - R. J. Libera and E. J. Zlotkiewicz,
*Early coefficients of the inverse of a regular convex function*, Proc. Amer. Math. Soc.**85 (2)**, 225-230, 1982. - W. Ma and D. Minda,
*A Unified treatment of some special classes of univalent functions*,*in: Proceedings of the Conference on Complex Analysis*, Z. Li, F. Ren, L. Yang, and S. Zhang(Eds.), Int. Press, 157-169, 1994. - G. Murugusundaramoorthy,
*Subclasses of starlike and convex functions involving Poisson distribution series*, Afr. Mat.**28**, 1357-1366, 2017. - G. Murugusundaramoorthy and T. Bulboacă,
*Hankel determinants for new subclasses of analytic functions related to a shell shaped region*, Mathematics**8**, 1041, 2020. - G. Murugusundaramoorthy, K. Vijaya and S. Porwal,
*Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series*, Hacettepe J. Math. Stat.**45 (4)**, 1101-1107, 2016. - S. Owa and H. M. Srivastava,
*Univalent and starlike generalized hypergeometric functions*, Canad. J. Math.**39**, 1057-1077, 1987. - S. Porwal,
*An application of a Poisson distribution series on certain analytic functions*, J. Complex Anal. Art. ID 984135, 1-3, 2014. - S. Porwal and M. Kumar,
*A unified study on starlike and convex functions associated with Poisson distribution series*, Afr. Mat.**27**, 1021-1027, 2016. - R. K. Raina and J. Sokol,
*On coeffcient estimates for a certain class of starlike functions*, Hacettepe Journal of Math. and Stat.**44 (6)**, 1427-1433, 2015. - R. B. Sharma and M. Haripriya,
*On a class of a-convex functions subordinate to a shell shaped region*, J. Anal.**25**, 93-105, 2016, DOI10.1007/s41478-017-0031-z. - J. Sokol and D. K. Thomas,
*Further results on a class starlike functions related to the Bernoulli lemniscate*, Houston J. Math.**44**, 83-95, 2018. - H. M. Srivastava,
*Operators of basic (or*, Iran. J. Sci. Technol. Trans. A: Sci.*q*-) calculus and fractional*q*-calculus and their applications in geometric function theory of complex analysis**44**, 327-344, 2020. - H. M. Srivastava, S. Hussain, A. Raziq and M. Raza,
*The Fekete-Szegö functional for a subclass of analytic functions associated with quasi-subordination*, Carpathian J. Math.**34**, 103-113, 2018. - H. M. Srivastava, N. Khan, M. Darus, S. Khan, Q. Z. Ahmad and S. Hussain,
*Fekete-Szegö type problems and their applications for a subclass of q-starlike functions with respect to symmetrical points*, Mathematics**8**, 842, 1-18, 2020. - H. M. Srivastava, A. K. Mishra and M. K. Das,
*The Fekete-Szegö problem for a subclass of close-to-convex functions*, Complex Variables Theory Appl.**44 (2)**, 145-163, 2001. - H. M. Srivastava, A. O. Mostafa, M. K. Aouf and H. M. Zayed,
*Basic and fractional*, Miskolc Math. Notes*q*-calculus and associated Fekete-Szegö problem for*p*-valently*q*-starlike functions and*p*-valently*q*-convex functions of complex order**20**, 489-509, 2019. - H. M. Srivastava, N. Raza, E. S. A. AbuJarad, G. Srivastava and M. H. AbuJarad,
*Fekete-Szegö inequality for classes of (*, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. (RACSAM)*p*,*q*)-starlike and (*p*,*q*)-convex functions**113**, 3563-3584, 2019.