Article ID: MTJPAM-D-20-00046

Title: Characterizations of Generalized Topologically Open Sets in Relator Spaces


Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-20-00046; Volume 3 / Issue 3 / Year 2021 (Special Issue), Pages 39-94

Document Type: Research Paper

Author(s): Themistocles M. Rassias a , Muwafaq M. Salih b , Árpád Száz c

aDepartment of Mathematics, National Technical University of Athens, Athens, Greece

bDepartment of Mathematics, University of Debrecen, Debrecen, Hungary

cDepartment of Mathematics, University of Debrecen, Debrecen, Hungary

Received: 7 December 2020, Accepted: 2 January 2021, Published: 25 April 2021.

Corresponding Author: Árpád Száz (Email address: szaz@science.unideb.hu)

Full Text: PDF


Abstract

A family  \mathcal{R}  of binary relations on a set  X  will be called a relator on  X, and the ordered pair  X{\hskip 0.2 mm}({\hskip 0.2 mm}{\mathcal{R}}{\hskip 0.2 mm})=({\hskip 0.2 mm}X{\hskip 0.2 mm}, \,{\mathcal{R}}{\hskip 0.2 mm})  will be called a relator space.
Each generalized topology  \mathcal{T}  on  X  can be easily derived from the family  \mathcal{R}_{\mathcal{T}}  of all Pervin’s preorder relations  R_{\,V}={\hskip 0.2 mm}V^{{\hskip 0.2 mm}2}{\hskip 0.2 mm}\cup \,V^{{\hskip 0.2 mm}c}\!\times X with  V\in {\mathcal{T}}{\hskip 0.2 mm}.
For a subset  A  of the relator space  X{\hskip 0.2 mm}({\mathcal{R}}),  we may briefly define

\textstyle A^{-}=\text{cl}_{\mathcal{R}}(A)=\bigcap \ \bigl\{\,R^{-1}[A]: \ \ R\in \mathcal{R}\bigr\},
A^{\circ}=\text{int}_{{\mathcal{R}}}(A)=\text{cl}_{{\mathcal{R}}}(A^{c})^{c}  and  A^{\dagger}=\text{res}_{{\mathcal{R}}}(A)=\text{cl}_{{\mathcal{R}}}(A)\setminus A.
Now, we may also naturally define   {\mathcal{T}}_{{\mathcal{R}}}=\{\,A\subseteq X: \ \ A\subseteq A^{{\hskip 0.2 mm}\circ}{\hskip 0.2 mm}\},
\textstyle {\mathcal{D}}_{{\mathcal{R}}}=\bigl\{\,A\subseteq X: \,\ \ A^{{\hskip 0.2 mm}-}={\hskip 0.2 mm}X\,\bigr\} \ \quad\textrm{and}\quad \ {\mathcal{N}}_{{\mathcal{R}}}=\bigl\{{\hskip 0.2 mm}A\subseteq X: \,\ \ A^{{\hskip 0.2 mm}-{\hskip 0.2 mm}\circ}={\hskip 0.2 mm}\emptyset\,\bigl\}\,.
Moreover, following some basic definitions in topological spaces, a subset  A  of the relator space  X{\hskip 0.2 mm}({\hskip 0.2 mm}{\mathcal{R}}{\hskip 0.2 mm})  may, for instance, be naturally called topologically
(1)  regular open  if  A=A^{{\hskip 0.2 mm}-{\hskip 0.2 mm}\circ};
(2)  preopen  if  A\subseteq A^{-\circ};       (3)  semi-open  if  A\subseteq A^{\circ-};
(4)  \alpha–open  if  A\subseteq A^{{\hskip 0.2 mm}\circ{\hskip 0.2 mm}-\circ};       (5)  \beta–open  if  A\subseteq A^{{\hskip 0.2 mm}-\,\circ\,-}{\hskip 0.2 mm};
(6)  quasi-open if there exists  V \in \mathcal{T}_{\mathcal{R}}  such that  V \subseteq A\subseteq V^{{\hskip 0.2 mm}-};
(7)  pseudo-open if there exists  V\in \mathcal{T}_{\mathcal{R}}  such that  A\subseteq V\subseteq A^{{\hskip 0.2 mm}-}.
And, the family of all such subsets A of X(\mathcal{R}) may, for instance, be naturally denoted by {\hskip 0.2mm}{\mathcal{T}}_{{\mathcal{R}}}^{\kappa} with {\hskip 0.2 mm}\kappa=r,   ps\alpha\betaq  and   ps,  respectively.
Here, we shall mainly be interested in the relationships and characterizations of the families \mathcal{T}_{\mathcal{R}}^{\kappa}. For instance, we shall prove the following assertions:
(1)  If  {\mathcal{R}}{\hskip 0.2 mm}  is topological, then  {\hskip 0.2 mm}{\mathcal{T}}_{{\mathcal{R}}}^{s}={\hskip 0.2 mm}{\mathcal{T}}_{{\mathcal{R}}}^{{\hskip 0.2 mm}q}. Moreover,  A \in \mathcal{T}_{\mathcal{R}}^{s}  if and only if  {\hskip 0.2 mm}A=V\cup B{\hskip 0.2 mm}  for some  V \in \mathcal{T}_{\mathcal{R}}  and  B\subseteq V^{{\hskip 0.2 mm}\dagger}.
(2)  If  \mathcal{R}  is topological, then  {\mathcal{T}}_{{\mathcal{R}}}^{p}={\mathcal{T}}_{{\mathcal{R}}}^{ps}. Moreover, if in addition  \mathcal{R}  is topologically filtered, then  A\in {\mathcal{T}}_{{\mathcal{R}}}^{{\hskip 0.2 mm}p} if and only if  A=V \cap B   for some  V \in \mathcal{T}_{\mathcal{R}}   and  B\in \mathcal{D}_{\mathcal{R}};
(3)  If  \mathcal{R}  is topological, then  {\mathcal{T}}_{{\mathcal{R}}}^{{\hskip 0.2 mm}\alpha}={\hskip 0.2 mm}{\mathcal{T}}_{{\mathcal{R}}}^{{\hskip 0.2 mm}s}\cap{\hskip 0.2 mm}{\mathcal{T}}_{{\mathcal{R}}}^{{\hskip 0.2 mm}p}. Moreover, if in addition  \mathcal{R}  is topologically filtered, then  A\in {\mathcal{T}}_{{\mathcal{R}}}^{{\hskip 0.2 mm}\alpha}   if and only if  A=V \setminus B  for some  V \in \mathcal{T}_{\mathcal{R}}  and  B \in \mathcal{N}_{\mathcal{R}}.
Set-theoretic properties and some proximal and paratopological counterparts of the families  {\hskip 0.2 mm}{\mathcal{T}}_{{\mathcal{R}}}^{\kappa}{\hskip 0.2 mm}  will be investigated in some subsequent papers.

Keywords: Generalized uniformities, Interiors and closures, Generalized open sets, Characterization theorems

References:
  1. M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ. 12, 77-90, 1983.
  2. T. Aho and T. Nieminen, Spaces in which preopen subsets are semiopen, Richerche Mat. 43, 45-49, 1994.
  3. P. Alexandroff, Zur Begründung der n-dimensionalen mengentheorischen topologie, Math. Ann. 94, 296-308, 1925.
  4. T. Al-Hawary, Generalized preopen sets, Quest. Answ. Gen. Topology 29, 73-80, 2011.
  5. T. Al-Hawary, On generalized preopen sets, Proyecciones J. Math. 32, 296-308, 2013.
  6. T.M. Al-shami, On supra semi open sets and some applications on topological spaces, J. Adv. Stud. Topol. 8, 144-153, 2017.
  7. D. Andrijević, Some properties of the topology of α–open sets, Mat. Vesnik 36, 1-10, 1984.
  8. D. Andrijević, Semi-preopen sets, Mat. Vesnik 38, 24-32, 1986.
  9. D. Andrijević, On the topology generated by preopen sets, Mat. Vesnik 39, 367-376, 1987.
  10. D. Andrijević, On SPO–equivalent topologies, Suppl. Rend. Circ. Mat. Palermo 29, 317-328, 1992.
  11. D. Andrijević, A note on α–equivalent topologies, Mat. Vesnik 45, 65-69, 1993.
  12. D. Andrijević, On b–open sets, Mat. Vesnik 48, 59-64, 1996.
  13. D. Andrijević and M. Ganster, On PO–equivalent topologies, Suppl. Rend. Circ. Mat. Palermo 24, 251-256, 1990.
  14. H. Arianpoor, Preorder relators and generalized topologies, J. Lin. Top. Algebra 5, 271-277, 2016.
  15. J. Ávila and F. Molina, Generalized weak structures, Int. Math. Forum 7, 2589-2595, 2012.
  16. M. Babahmed, Semi-open sets and semi-separability in topological spaces, Available on the Internet, 18 pp., 2017.
  17. C. Boonpok and J. Khampakdee, Between closed sets and generalized closed sets in closure spaces, Acta Math. Univ. Ostrav. 16, 3-14, 2008.
  18. N. Bourbaki, General Topology, Chapters 1–4, Springer-Verlag, Berlin, 1989.
  19. M. Caldas, A note on some applications of α–open sets, IJMMS 2, 125-130, 2003.
  20. M. Caldas, S. Jafari and R. K. Saraf, Semi–Θ–open sets and new classes of maps, Bull. Iran. Math. Soc. 31, 37-52, 2005.
  21. C. Carpintero, N. Rajesh and E. Rosas, On [γ, γ]–semiopen sets, Bol. Mat. 17, 125-136, 2010.
  22. E. Cech, Topological Spaces, Academia, Prague, 1966.
  23. T.A. Chapman, A further note on closure and interior operators, Amer. Math. Monthly 69, 524-529, 1962.
  24. M.P. Chaudhary and V. Kumar, On α–open sets in a topological space, IJMA 2, 703-706, 2011.
  25. M. Chicourrat and C. D. Horváth, Pretopologies, preuniformities and probabilistic metric spaces, Acta Math. Hungar. 110, 91-116, 2006.
  26. H. H. Corson and E. Michael, Metrizability of countable unions, Illinois J. Math. 8, 351-360, 1964.
  27. S. G. Crossley, A note on semitopological classes, Proc. Amer. Math. Soc. 43, 416-420, 1974.
  28. S. G. Crossley, A note on semitopological properties, Proc. Amer. Math. Soc. 72, 409-412, 1978.
  29. S. G. Crossley and S. K. Hildebrandt, Semi-closure, Texas J. Sci. 22, 99-112, 1971.
  30. S. G. Crossley and S. K. Hildebrandt, Semi-closed sets and semi-continuity in topological spaces, Texas J. Sci. 22, 123-126, 1971.
  31. S. G. Crossley and S. K. Hildebrandt, Semi-topological properties, Fund. Math. 74, 233-254, 1972.
  32. Á. Császár, Foundations of General Topology, Pergamon Press, London, 1963.
  33. Á. Császár, Generalized open sets, Acta Math. Hungar. 75, 65-87, 1997.
  34. Á. Császár, On the γ–interior and γ–closure of a set, Acta Math. Hungar. 80, 89-93, 1998.
  35. Á. Császár, γ–quasi-open sets, Studia Sci. Math. Hungar. 38, 171-176, 2001.
  36. Á. Császár, Remarks on γ-quasi-open sets, Studia Sci. Math. Hungar. 39, 137-141, 2002.
  37. Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar. 106, 53-66, 2005.
  38. Á. Császár, Further remarks on the formula for the γ–interior, Acta Math. Hungar. 113, 325-332, 2006.
  39. Á. Császár, Remarks on quasi-topologies, Acta Math. Hungar. 119, 197-200, 2008.
  40. Á. Császár, Weak structures, Acta Math. Hungar. 131, 193-195, 2011.
  41. H. M. Darwesh and S. F. Namiq, Some properties of preopen set in closure spaces, J. Garmian Univ. 5, 229-246, 2018.
  42. P. Das, Note on some applications of semi-open sets, Progress Math. 7, 33-44, 1973.
  43. A. K. Das, A note on weak structures due to Császár, Bul. Acad. Stiinte Repub. Mold. Mat. 2, 114-116, 2015.
  44. B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cambridge University Press, Cambridge, 2002.
  45. A.S. Davis, Indexed systems of neighbordoods for general topological spaces, Amer. Math. Monthly 68, 886-893, 1961.
  46. R. Devi, S. Sampathkumar and M. Caldas, On α–open sets and sα–continuous maps, Gen. Math. 16, 77-84, 2008.
  47. K. Dlaska, N. Ergun, M. Ganster, On the topology generated by semi-regular sets, Indian J. Pure Appl. Math. 25, 1163-1170, 1994.
  48. J. Dontchev, The characterization of spaces and maps via semi-preopen sets, Indian J. Pure Appl. Math. 25, 939-947, 1994.
  49. J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. 16, 35-48, 1995.
  50. J. Dontchev, Survey on preopen sets, Meetings on Topological Spaces, Theory and Applications, Yatsushiro College of Technology, Kumamoto, Japan, 18 pp., 1998.
  51. Z. Duszyński and T. Noiri, Semi-open, semi-closed sets and semi-continuity of functions, Math. Pannon. 23, 195-200, 2012.
  52. V.A. Efremovič, The geometry of proximity, Mat. Sb. 31, 189-200, 1952, (Russian).
  53. V. A. Efremović and A. S. Švarc, A new definition of uniform spaces. Metrization of proximity spaces, Dokl. Acad. Nauk. SSSR 89, 393-396, 1953, (Russian).
  54. E. Ekici, On weak structures due to Császár, Acta Math. Hungar. 134, 565-570, 2012.
  55. E. Ekici and B. Roy, New generalized topologies on generalized topological spaces due to Császár, Acta Math. Hungar. 132, 117-124, 2011.
  56. N. Elez and O. Papaz, The new operators in topological spaces, Math. Moravica 17, 63-68, 2013.
  57. M. E. El-Shafei, M. Abo-elhamayel and T. M. Al-shami, On supra R-open sets and some applications on topological spaces, J. Progr. Res. Math. 8, 1237-1248, 2016.
  58. P. Fletcher and W. F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.
  59. M. Ganster, Preopen sets and resolvable spaces, Kyungpook Math. J. 27, 135-143, 1987.
  60. M. Ganster and D. Andrijević, On some questions concerning semi-preopen sets, J. Inst. Math. Com. Sci. 1, 65-72, 1988.
  61. M. Ganster and M. Steiner, On some questions about b–open sets, Quest. Answers in Gen. Topology 25, 45-52, 2007.
  62. B. Ganter and R. Wille, Formal Concept Analysis, Springer-Verlag, Berlin, 1999.
  63. R. Gargouri and A. Rezgui, A unification of weakening of open and closed subsets in a topological spaces, Bull. Malays. Math. Sci. Soc. 40, 1219-1230, 2017.
  64. S. Givant and P. Halmos, Introduction to Boolean Algebras, Springer-Verlag, Berlin, 2009.
  65. T. Glavosits, Generated preorders and equivalences, Acta Acad. Paed. Agrienses, Sect. Math. 29, 95-103, 2002.
  66. A. Gupta and R. D. Sarma, A note on some generalized closure and interior operators in a topological space, Math. Appl. 6, 11-20, 2017.
  67. A. Güldürdek and O. B. Özbakir, On γ–semi-open sets, Acta Math. Hungar. 109, 347-355, 2005.
  68. T. R. Hamlett, Correction to the paper “Semi-open sets and semi-continuity in topological spaces” by Norman Levine, Proc. Amer. Math. Soc. 70, 36-41, 1963.
  69. P. C. Hammer, Kuratowski’s closure theorem, Nieuw Arch. Wisk. 8, 74-80, 1960.
  70. F. Hausdorff, Grundzüge der Mengenlehre, De Gruyter, Berlin, 1914.
  71. W. Hunsaker and W. Lindgren, Construction of quasi-uniformities, Math. Ann. 188, 39-42, 1970.
  72. S. Hussain, On generalized open sets, Hacet. J. Math. Stat. 47, 1438-1446, 2018.
  73. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A 27, 222-224, 1941.
  74. B. M. Ittanagi and S. S. Benchalli, On paraopen sets and maps in topological spaces, Kyungpook Math. J. 56, 301-310, 2016.
  75. Y. Isomichi, New concept in the theory of topological spaces–Supercondensed set, subcondensed set, and condensed set, Pacific J. Math. 38, 657-668, 1971.
  76. S. Jafari and S. Tahiliani, Supra β–open sets and supra β–continuity on topological spaces, Ann. Univ. Sci. Budapest Sect. Math. 56, 1-9, 2013.
  77. R. Jamunarani, P. Jeyanthi and T. Noiri, On generalized weak structures, 47, 21-26, 2016.
  78. D.S. Janković and I.L. Reilly, On semi separation properties, Indian J. Pure Apppl. Math. 16, 957-964, 1985.
  79. Y. B. Jun, S. W. Jeong, H. j. Lee and J. W. Lee, Applications of pre-open sets, Appl. Gen. Top. 9, 213-228, 2008.
  80. S.-M. Jung, Interiors and cosures of sets and applications, Int. J. Pure Math. 3, 41-45, 2016.
  81. S.-M. Jung, D. Nam, Some properties of interior and closure in general topology, Mathematics 7 (7), 624, 1-10, 2019.
  82. J. L. Kelley, General Topology, Van Nostrand Reinhold Company, New York, 1955.
  83. J. Khampakdee, Semi-Open Sets in Closure Spaces, Ph.D. Thesis under the supervision of J. Šlapal. 55 pp., Department of Mathematics, Brno University of Technology, Brno, 2009.
  84. Y. K. Kim, W. K. Min, σ–structures and quasi-enlarging operations, Int. J. Pure Appl. Math. 86, 791-798, 2013.
  85. V. S. Kumar, On semi-open sets and semi-separability, Global J Sci. Front. Res. Math. Dec. Sci. 13, 17-20, 2013.
  86. V. Kumari, T. C. K. Raman, On characterization of b-open sets in topological spaces, Int. J. Appl. Innov. Eng. Manag. 2, 229-235, 2013.
  87. K. Kuratowski, Sur l’opération \overline{A} de l’analysis situs, Fund. Math. 3, 182-199, 1922. (An English translation: On the operation \overline{A} in analysis situs, prepared by M. Bowron in 2010).
  88. K. Kuratowski, Topology I, Academic Press, New York, 1966.
  89. J. Kurdics, A note on connection properties, Acta Math. Acad. Paedagog. Nyházi. 12, 57-59, 1990.
  90. J. Kurdics and Á. Száz, Well-chainedness characterizations of connected relators, Math. Pannon. 4, 37-45, 1993.
  91. R. M. Latif, Semi-convergence of filters and nets, Math. J. Okayama Univ. 41, 103-109, 1999.
  92. Y. Lei and J. Zhang, Generalizing topological set operators, Electon. Notes Theor. Comput. Sci. 345, 63-76, 2019.
  93. N. Levine, On the commutivity of the closure and interior operators in topological spaces, Amer. Math. Montly 68, 474-477, 1961.
  94. N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70, 36-41, 1963.
  95. N. Levine, Some remarks on the closure operator in topological spaces, Amer. Math. Monthly 70, p. 553, 1963.
  96. N. Levine, On uniformities generated by equivalence relations, Rend. Circ. Mat. Palermo 18, 62-70, 1969.
  97. N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19, 89-96, 1970.
  98. N. Levine, On Pervin’s quasi uniformity, Math. J. Okayama Univ. 14, 97-102, 1970.
  99. J. Mala, Relators generating the same generalized topology, Acta Math. Hungar. 60, 291-297, 1992.
  100. J. Mala and Á. Száz, Properly topologically conjugated relators, Pure Math. Appl., Ser. B 3, 119-136, 1992.
  101. J. Mala and Á. Száz, Modifications of relators, Acta Math. Hungar. 77, 69-81, 1997.
  102. A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53, 47-53, 1982.
  103. M. Mirmiran, A note on extremally disconnected spaces, Res. Open J. Inf. Sci. 1, 1-3, 2013.
  104. S. Modak, Remarks on dense sets, Int. Math. Forum 6, 2153-2158, 2011.
  105. A. Mukharjee and R. M. Roy, On generalized preopen sets, Mat. Stud. 51, 195-199, 2019.
  106. S. A. Naimpally and B. D. Warrack, Proximity Spaces, Cambridge University Press, Cambridge, 1970.
  107. H. Nakano and K. Nakano, Connector theory, Pacific J. Math. 56, 195-213, 1975.
  108. A.A. Nasef and R. Mareay, More on simply open sets and its applications, South Asian J. Math. 5, 100-108, 2015.
  109. M. Navaneethakrishnan and S. Thamaraiselvi, On weak structures of Császár, Acta Math. Hungar. 137, 224-229, 2012.
  110. O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15, 195-213, 1965.
  111. T. Noiri, On semi-continuous mappings, Lincei-Rend. Sci. Fis. Mat. Nat. 54, 210-214, 1973.
  112. T. Noiri, Hyperconnectedness and preopen sets, Rev. Roum. Math. Pures Appl. 29, 329-334, 1984.
  113. T. Noiri, On α–continuous functions, Časopis Pěst. Mat. 109, 118-126, 1984.
  114. T. Noiri, Remarks on δ–semi-open sets and δ–preopen sets, Demonstration Math. 36, 1007-1020, 2003.
  115. T. M. Nour, A note on some applications of semi-open sets, Int. J. Math. Math. Sci. 21, 205-207, 1998.
  116. G. Pataki, Supplementary notes to the theory of simple relators, Radovi Mat. 9, 101-118, 1999.
  117. G. Pataki, On the extensions, refinements and modifications of relators, Math. Balk. 15, 155-186, 2001.
  118. G. Pataki and Á. Száz, A unified treatment of well-chainedness and connectedness properties, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 19, 101-165, 2003.
  119. D. Peleg, A generalized closure and complement phenomenon, Discrete Math. 50, 285-293, 1984.
  120. W. J. Pervin, Uniformizations of neighborhood axioms, Math. Ann. 147, 313-315, 1962.
  121. W. J. Pervin, Quasi-uniformization of topological spaces, Math. Ann. 147, 316-317, 1962.
  122. W. J. Pervin, Quasi-proximities for topological spaces, Math. Ann. 150, 325-326, 1963.
  123. V. Pipitone and G. Russo, Spazi semiconnessi e spazi semiaperty, Rend. Circ. Mat. Palermo 24, 273-285, 1975.
  124. I. Ramabhadrasarma and V. Srinivasakumar, On semi-open sets and semi-continuity, J. Adv. Stud. Topol. 3, 6-10, 2012.
  125. V. V. S. Ramachandram, A note on pre-open sets, Res. J. Pure Algebra 1, 132-134, 2011.
  126. Th. M. Rassias, M. Salih and Á. Száz, Set-theoretic properties of generalized topologically open sets in relator spaces, In: I. N. Parasidis, E. Providas and Th. M. Rassias (Eds.), Mathematical Analysis in Interdisciplinary Research, Springer, to appear.
  127. Th. M. Rassias, M. Salih and Á. Száz, Characterizations and set-theoretic properties of generalized proximally open sets in relator spaces, in preparation.
  128. I. L. Reilly and M. K. Vamanamurthy, On α-continuity in topological spaces, Acta Math. Hungar. 45, 27-32, 1985.
  129. I. L. Reilly and M. K. Vamanamurthy, On some questions concerning preopen sets, Kyungpook Math. J. 30, 87-93, 1990.
  130. F. Riesz, Die Genesis der Raumbegriffs, Math. Naturwiss. Ber. Ungarn 24, 309-353, 1906.
  131. F. Riesz, Stetigkeitsbegriff und abstrakte Mengenlehre, Atti IV Congr. Intern.Mat., Roma II, 18-24, 1908.
  132. M. Salih and Á. Száz, Generalizations of some ordinary and extreme connectedness properties of topological spaces to relator spaces, Elec. Res. Arch. 28, 471-548, 2020.
  133. R. D. Sarma, On extremally disconnected generalized topologies, Acta Math. Hungar. 134, 583-588, 2012.
  134. M. S. Sarsak, On b–open sets and associated generalized open sets, Questions Answers Gen. Topology 27, 157-173, 2009.
  135. M. S. Sarsak, On some properties of generalized open sets in generalized topological spaces, Demonstr. Math. 46, 415-427, 2013.
  136. O. R. Sayed, Supra pre-open sets and supra pre-continuity on topological spaces, Sci. Stud. Res. Ser. Math. Inform. 20, 79-88, 2010.
  137. O. R. Sayed and T. Noiri, On supra b-open sets and supra b-continuity on topological spaces, Eur. J. Pure Appl. Math. 3, 295-302, 2010.
  138. W. Sierpinski, General Topology, (Mathematical Expositions No. 7), University of Toronto Press, Toronto, 1956.
  139. D. Sivaraj, A note on semitopological properties, Math. Chronicle 13, 73-78, 1984.
  140. P. Sivagami, Remarks on γ–interior, Acta Math. Hungar. 119, 81-94, 2008.
  141. Yu. M. Smirnov, On proximity spaces, Math. Sb. 31, 543-574, 1952, (Russian).
  142. B. M. R. Stadler and P. F. Stadler, Basic properties of closure spaces, J. Chem. Inf. Comput. Sci. 42, 577-585, 2002.
  143. L. A. Steen and J. A. Seebach, Counterexamples in Topology, Springer-Verlag, New York, 1970.
  144. M. H. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41, 374-481, 1937.
  145. Á. Száz, Basic tools and mild continuities in relator spaces, Acta Math. Hungar. 50, 177-201, 1987.
  146. Á. Száz, Directed, topological and transitive relators, Publ. Math. Debrecen 35, 179-196, 1988.
  147. Á. Száz, The fat and dense sets are more important than the open and closed ones, Abstracts of the Seventh Prague Topological Symposium, Inst. Math. Czechoslovak Acad. Sci., p. 106, 1991.
  148. Á. Száz, Relators, Nets and Integrals, Unfinished doctoral thesis, Debrecen, 126 pp., 1991.
  149. Á. Száz, Inverse and symmetric relators, Acta Math. Hungar. 60, 157-176, 1992.
  150. Á. Száz, Structures derivable from relators, Singularité 3, 14-30, 1992.
  151. Á. Száz, Refinements of relators, Tech. Rep., Inst. Math., Univ. Debrecen 76, 19 pp., 1993.
  152. Á. Száz, Neighbourhood relators, Bolyai Soc. Math. Stud. 4, 449-465, 1995.
  153. Á. Száz Topological characterizations of relational properties, Grazer Math. Ber. 327, 37-52, 1996.
  154. Á. Száz, Somewhat continuity in a unified framework for continuities of relations, Tatra Mt. Math. Publ. 24, 41-56, 2002.
  155. Á. Száz, Upper and lower bounds in relator spaces, Serdica Math. J. 29, 239-270, 2003.
  156. Á. Száz, Rare and meager sets in relator spaces, Tatra Mt. Math. Publ. 28, 75-95, 2004.
  157. Á. Száz, Galois-type connections on power sets and their applications to relators, Tech. Rep., Inst. Math., Univ. Debrecen 2005/2, 38 pp., 2005.
  158. Á. Száz, Supremum properties of Galois–type connections, Comment. Math. Univ. Carolin. 47, 569-583, 2006.
  159. Á. Száz, Minimal structures, generalized topologies, and ascending systems should not be studied without generalized uniformities, Filomat 21, 87-97, 2007.
  160. Á. Száz, Galois type connections and closure operations on preordered sets, Acta Math. Univ. Comenian. (N.S.) 78, 1-21, 2009.
  161. Á. Száz, Foundations of the theory of vector relators, Adv. Stud. Contemp. Math. 20, 139-195, 2010.
  162. Á. Száz, Inclusions for compositions and box products of relations, J. Int. Math. Virt. Inst. 3, 97-125, 2013.
  163. Á. Száz, Lower semicontinuity properties of relations in relator spaces, Adv. Stud. Contemp. Math. (Kyungshang) 23, 107-158, 2013.
  164. Á. Száz, A particular Galois connection between relations and set functions, Acta Univ. Sapientiae, Math. 6, 73-91, 2014.
  165. Á. Száz, Generalizations of Galois and Pataki connections to relator spaces, J. Int. Math. Virtual Inst. 4, 43-75, 2014.
  166. Á. Száz, Basic tools, increasing functions, and closure operations in generalized ordered sets, In: P. M. Pardalos and Th. M. Rassias (Eds.), Contributions in Mathematics and Engineering: In Honor of Constantion Caratheodory, Springer, 551-616, 2016.
  167. Á. Száz, Four general continuity properties, for pairs of functions, relations and relators, whose particular cases could be investigated by hundreds of mathematicians, Tech. Rep., Inst. Math., Univ. Debrecen 2017/1, 17 pp., 2017.
  168. Á. Száz, Contra continuity properties of relations in relator spaces, Tech. Rep., Inst. Math., Univ. Debrecen 2017/5, 48 pp., 2017.
  169. Á. Száz, The closure-interior Galois connection and its applications to relational equations and inclusions, J. Int. Math. Virt. Inst. 8, 181-224, 2018.
  170. Á. Száz, Corelations are more powerful tools than relations, In: Th.M. Rassias (Ed.), Applications of Nonlinear Analysis, Springer Optimization and Its Applications 134, 711-779, 2018.
  171. Á. Száz, Relationships between inclusions for relations and inequalities for corelations, Math. Pannon. 26, 15-31, 2018.
  172. Á. Száz, Galois and Pataki connections on generalized ordered sets, Earthline J. Math. Sci. 2, 283-323, 2019.
  173. Á. Száz, Birelator spaces are natural generalizations of not only bitopological spaces, but also ideal topological spaces, In: Th. M. Rassias and P. M. Pardalos (Eds.), Mathematical Analysis and Applications, Springer Optimization and Its Applications 154, Springer Nature Switzerland AG, 543-586, 2019.
  174. W. J. Thron, Topological Structures, Holt, Rinehart and Winston, New York, 1966.
  175. H. Tietze, Beitr” age zur allgemeinen Topologie I. Axiome für verschiedene Fassungen des Umgebungsbegriffs, Math. Ann. 88, 290-312, 1923.
  176. A. Weil, Sur les espaces á structure uniforme et sur la topologie générale, Actual. Sci. Ind. 551, Herman and Cie, Paris, 1937.
  177. S. Willard and R. M. Latif, Semi-open and regularly closed sets in compact metric spaces, Math. Japon. 46, 157-161, 1997.