Title: A Note on Reciprocal Degenerate Bell Numbers and Polynomials
Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814
Article ID: MTJPAM-D-20-00047; Volume 3 / Issue 3 / Year 2021 (Special Issue), Pages 140-146
Document Type: Research Paper
Author(s): Taekyun Kim a , Dae San Kim b
aDepartment of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
bDepartment of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
Received: 17 December 2020, Accepted: 12 January 2021, Published: 25 April 2021.
Corresponding Author: Dae San Kim (Email address: dskim@sogang.ac.kr)
Full Text: PDF
Abstract
Recently, degenerate Bell numbers and polynomials were introduced as degenerate versions of the ordinary Bell numbers and polynomials. In this paper, we consider reciprocal degenerate Bell numbers and polynomials whose generating function is the reciprocal of that of the degenerate Bell polynomials. We investigate some properties for those numbers and polynomials, including their explicit expressions, recurrence relations and their connections with the degenerate Bell numbers and polynomials.
Keywords: Reciprocal degenerate Bell polynomials, Degenerate Bell polynomials, Degenerate Stirling numbers of the first kind, Degenerate Stirling numbers of the second kind
References:- J. Brillhart, Mathematical notes: Note on the single variable Bell polynomials, Amer. Math. Monthly 74 (6), 695-696, 1967.
- L. Carlitz, Arithmetic properties of the Bell polynomials, J. Math. Anal. Appl. 15, 33-52, 1966.
- L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math. 15, 51-88, 1979.
- L. Carlitz, Some remarks on the Bell numbers, Fibonacci Quart. 18 (1), 66-73, 1980.
- R. Frucht, A combinatorial approach to the Bell polynomials and their generalizations, 1969 Recent Progress in Combinatorics (Proc. Third Waterloo Conf. on Combinatorics) pp. 69-74 Academic Press, New York, 1968.
- G. P. M. Heselden, A convolution involving Bell polynomials, Proc. Cambridge Philos. Soc. 74, 97-106, 1973.
- T. Kim, A note on degenerate Stirling polynomials of the second kind, Proc. Jangjeon Math. Soc. 20 (3), 319-331, 2017.
- D. S. Kim and T. Kim, On degenerate Bell numbers and polynomials, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 111, 435-446, 2017.
- T. Kim and D. S. Kim, Identities involving degenerate Euler numbers and polynomials arising from non-linear differential equations, J. Nonlinear Sci. Appl. 9, 2086-2098, 2016.
- T. Kim and D. S. Kim, Identities of symmetry for degenerate Euler polynomials and alternating generalized falling factorial sums, Iran. J. Sci. Technol. Trans. A Sci. 41 (4), 939-949, 2017.
- T. Kim and D. S. Kim, Some identities of extended degenerate r-central Bell polynomials arising from umbral calculus, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114, Paper No 1, 19 pp, 2020.
- T. Kim and D. S. Kim, A note on central Bell numbers and polynomials, Russ. J. Math. Phys. 27 (1), 76-81, 2020.
- T. Kim, D. S.Kim and D. V. Dolgy, On partially degenerate Bell numbers and polynomials, Proc. Jangjeon Math. Soc. 20 (3), 337-345, 2017.
- T. Kim, D. S. Kim, H. Y. Kim and J. Kwon, Degenerate Stirling polynomials of the second kind and some applications, Symmetry 11 (8), 1046, 11 pp, 2019.
- T. Kim, D. S. Kim, H.-I. Kwon and S.-H. Rim, Some identities for umbral calculus associated with partially degenerate Bell numbers and polynomials, J. Nonlinear Sci. Appl. 10, 2966-2975, 2017.
- M. Razpet, Congruences involving Bell polynomials, Slovenian Obzornik Mat. Fiz. 36 (4), 101-107, 1989.
- S. Roman, The Umbral Calculus, Pure and Applied Mathematics 111, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984.