Article ID: MTJPAM-D-20-00048

Title: Integrals with Two–Variable Generating Function in the Integrand

Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-20-00048; Volume 3 / Issue 3 / Year 2021 (Special Issue), Pages 95-103

Document Type: Research Paper

Author(s): Musharraf Ali a , Mohd Ghayasuddin b , Tibor K. Pogány c

aDepartment of Mathematics, G.F. College, Shahjahanpur-242001, India

bDepartment of Mathematics, Integral University Campus, Shahjahanpur-242001, India

cFaculty of Maritime Studies, University of Rijeka, 51000 Rijeka, Croatia and Institute of Applied Mathematics, Óbuda University, 1034 Budapest, Hungary

Received: 17 December 2020, Accepted: 30 December 2020, Published: 25 April 2021.

Corresponding Author: Tibor K. Pogány (Email addresses:;

Full Text: PDF


The main motive of this study is to present a new class of generalized integral formulae which involve a generating function of two variables G(u, x). By this approach we deduce a set of new outcomes, which are integrals associated with generalized hypergeometric function, Laguerre, Hermite and Bessel polynomials, Kampé de Fériet hypergeometric series of two variables, Lauricella function and several special cases of our main results.

Keywords: Generating functions, Lauricella hypergeometric function FD(m), Appell–Horn hypergeometric function F1 of two variables, Kampé de Fériet series, Hypergeometric functions, Generalized Bessel polynomials, Hermite polynomials

  1. S. Ahmed and M. A. Khan, Euler type integral involving generalized Mittag-Leffler function, Commun. Korean Math. Soc. 29 (3), 479-487, 2014.
  2. P. Appell and J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques: Polynomes d’Hermite, Gauthier-Villars, Paris, 1926.
  3. L. Borngässer, Über hypergeometrische Funktionen zweier Veränderlichen. Dissertation der Technischen Hochschuhle Darmstadt, Universität Darmstadt, 1933.
  4. J. Choi, P. Agarwal, S. Mathur and S. D. Purohit, Certain new integral formulas involving the generalized Bessel function, Bull. Korean Math. Soc. 51 (4), 995-1003, 2014.
  5. J. Edward, A Treatise on the Integral Calculus, Vol. II, Chelsea Pub. Com., New York, 1922.
  6. A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill Book Company, Inc., New York, Toronto and London, 1953.
  7. M. Ghayasuddin, N. U. Khan and S. W. Khan, Some finite integrals involving the product of Bessel function with Jacobi and Laguerre polynomials, Commun. Korean Math. Soc. 33 (3), 1013-1024, 2018.
  8. E. Grasswald, Bessel Polynomials, Springer-Verlag, Berlin, Heidelberg and New York, 1978.
  9. J. Horn, Hypergeometrische funktionen zweier veränderlichen, Math. Ann. 105, 381-407, 1931.
  10. P. Humbert, The confluent hypergeometric functions of two variables, Proc. Roy. Soc. Edinburgh 41, 73-96, 1922.
  11. N. U. Khan and M. Ghayasuddin, Some unified integrals associated with Whittaker function, J. Frac. Calc. Appl. 9 (1), 153-159, 2018.
  12. N. U. Khan, M. Ghayasuddin and M. Shadab, A new class of Euler type integral operators involving multiindex Mittag-Leffler function, Honam Math. J. 40 (4), 691-700, 2018.
  13. N. U. Khan, M. Ghayasuddin and T. Usman, On certain integral formulas involving the product of Bessel function and Jacobi polynomial, Tamkang J. Math. 47 (3), 339–349, 2016.
  14. N. U. Khan, S. W. Khan and M. Ghayasuddin, Some new results associated with the Bessel–Struve kernel function, Acta Univ. Apulensis 48, 89-101, 2016.
  15. H.L. Krall and O. Frink, A new class of orthogonal polynomials, the Bessel polynomials, Trans. Amer. Math. Soc. 65, 100-115, 1949.
  16. C. Krattenthaler and K. Srinivasa Rao, Automatic generation of hypergeometric identities by the beta integral method, in R. Jagannathan, S. Kanemitsu, G. Vanden Berghe, W. Van Assche (Eds.) Proceedings of the International Conference on Special Functions and their Applications (Chennai, 2002). J. Comput. Appl. Math. 160 (1-2), 159-173, 2003.
  17. G. Lauricella, Sulle funzioni ipergeometriche a più variabili, Rendiconti del Circolo Matematico di Palermo 7, 111-158, 1893.
  18. J. L. Lavoie and G. Trottier, On the sum of certain Appell series, Ganita 20 (1), 43-46, 1969.
  19. T. M. MacRobert, Beta functions formulae and integrals involving E-function, Math. Ann. 142, 450-452, 1960/61.
  20. F. Oberhettinger, Tables of Mellin transforms, Springer, New York, 1974.
  21. A. P. Prudnikov, A. Yu. Brychkov and O. I. Marichev, Integrals and sreies, Vol. III, Gordon and Breach Science Publishers, New York, 1990.
  22. H. M. Srivastava and M. C. Daous, A note on the convergence of Kampé de Fériet double hypergeometric series, Math. Nachr. 53, 151-159, 1972.
  23. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1985.
  24. H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood Ltd., Chichester, England, 1984.