Article ID: MTJPAM-D-20-00053

Title: Frankl-Type Problem for a Mixed Type Equation Associated Hyper-Bessel Differential Operator


Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-20-00053; Volume 3 / Issue 3 / Year 2021 (Special Issue), Pages 327-333

Document Type: Research Paper

Author(s): Bakhodirjon Toshtemirov a

aV. I. Romanovskiy Institute of Mathematics Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan

Received: 25 December 2020, Accepted: 6 April 2021, Published: 25 April 2021.

Corresponding Author: Bakhodirjon Toshtemirov (Email address: toshtemirovbh@gmail.com)

Full Text: PDF


Abstract

The main target of the present research is the Frankl-type problem for mixed type equation with the Caputo-like counter part hyper-Bessel fractional derivative. We prove a unique solvability of this problem under certain conditions on given data. For this aim we use energy integrals (for the uniqueness) and method of integral equations (for the existence).

Keywords: Frankl-type problem, Mixed equation, Caputo-like counterpart hyper-Bessel operator, Integral equation

References:
  1. P. Agarwal, A. S. Berdyshev and E. T. Karimov, Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative, Result. Math. 71 (3), 1235-1257, 2017.
  2. P. Agarwal, M. Chand, D. Baleanu et al. On the solutions of certain fractional kinetic equations involving k-Mittag-Leffler function. Adv. Differ. Equ. 249, 2018. https://doi.org/10.1186/s13662-018-1694-8
  3. F. Al-Musalhi, N. Al-Salti and E. Karimov, Initial boundary value problems for fractional differential equation with hyper-Bessel operator. Fract. Calc. Appl. Anal. 21 (1), 200-219, 2018.
  4. A. S. Berdyshev, A. Cabada and E. T. Karimov, On a non-local boundary problem for a parabolic-hyperbolic equation involving Riemann-Liouville fractional differential operator, Nonlinear Analysis 75, 3268-3273, 2012.
  5. V. M. Bulavitsky, Closed form of the solutions of some boundary-value problems for anomalous diffusion equation with Hilfer’s generalized derivative, Cybernetics and Systems Analysis 30 (4), 570-577, 2014.
  6. I. Dimovski, Operational calculus for a class of differential operators, C. R. Acad. Bulg. Sci. 19 (12), 1111-1114, 1996.
  7. T. D. Djuraev, A. Sopuev and M. Mamajonov, Boundary-value problems for the parabolic-hyperbolic type equations, Tashkent, FAN. 1986. [in Russian].
  8. F. I. Frankl, On a new boundary-value problem for the equation y\frac{\partial^2z}{\partial x^2}+\frac{\partial^2z}{\partial y^2}=0, Uch. Zap.Moscow Univ. 152, 1951.
  9. S. Kh. Gekkieva, A boundary value problem for the generalized transfer equation with a fractional derivative in a semi-infinite domain, Izv. Kabardino-Balkarsk. Nauchnogo Tsentra RAN 8 (1), 6-8, 2002. [in Russian].
  10. S. Jain and P. Agarwal, On new applications of fractional calculus, Bol. Soc. Parana. Mat. 37, 113-118, 2019.
  11. T. Sh. Kal’menov and M. A. Sadybekov, On a Frankl-type problem for a mixed parabolic-hyperbolic equation, Sib. Math. J. 58, 227-231, 2017.
  12. E. T. Karimov, Boundary value problems for parabolic-hyperbolic type equations with spectral parameter, PhD Thesis, Tashkent, 2006.
  13. E. T. Karimov, Tricomi type boundary value problem with integral conjugation condition for a mixed type equation with Hilfer fractional operator, Bulletin of the Institute of Mathematics 2 (1), 19-26, 2019.
  14. E. T. Karimov. Boundary value problems with integral transmitting conditions and inverse problems for integer and fractional order differential equations, DSc Thesis. V. I. Romanovkiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent, pp. 207. 2020.
  15. E. T. Karimov, Frankl-type problem for a mixed type equation with the Caputo fractional derivative, Lobachevskii J Math. 41, 1829-1836, 2020. https://doi.org/10.1134/S1995080220090152
  16. E. T. Karimov, A. S. Berdyshev and N. A. Rakhmatullaeva, Unique solvability of a non-local problem for mixed-type equation with fractional derivative, Math Meth Appl Sci. 40 (8), 2994-2999, 2017.
  17. E. T. Karimov and B. H. Toshtemirov, Tricomi type problem with integral conjugation condition for a mixed type equation with the hyper-Bessel fractional differential operator. Bulleten of the Institute of Mathematics, 4 (1), 9-14, 2019.
  18. S. Kerbal, E. Karimov and N. Rakhmatullayeva, Non-local boundary problem with integral form transmitting condition for fractional mixed type equation in a composite domain, Mat. Model. Nat. Phenom. 12 (3), 95-104, 2017.
  19. V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Res. Notes in Math. Ser., 301. Longman and J. Wiley, Harlow and N. York, 1994.
  20. A. M. Laypanova, A. O. Zheldasheva and V. N. Lesev, Analog of the Francl problem for the mixed second order equation with variable coefficients at younger members, Fundamental research, 8, 1351-1355, 2014.
  21. N. H. Luc, L. N. Huynh, D. Baleanu et al. Identifying the space source term problem for a generalization of the fractional diffusion equation with hyper-Bessel operator. Adv Differ Equ. 261, 2020. https://doi.org/10.1186/s13662-020-02712-y
  22. A. M. Nakhushev, Problems with shift for partial differential equations, Moscow, Nauka. 2006. [in Russian].
  23. Z. A. Nakhusheva, Nonlocal boundary value problems for main and mixed type differential equations, Nalchik. 2011. [in Russian].
  24. A. V. Pskhu, Partial Differential Equations of Fractional Order, Moscow, Nauka. 2005. [in Russian].
  25. A. V. Pskhu, The Frankl’ problem for a Hyperbolic-parabolic equation, Differ. Equations 39 (1), 112-120, 2013.
  26. J. E. Restrepo, M. Ruzhansky and D. Suragan, Explicit representations of solutions for linear fractional differential equations with variable coefficients, arXiv.org/math/arXiv:2006.15356v1, pp. 27. 2020.
  27. M. S. Salakhitdinov and A. K. Urinov, To the spectral theory of equations of mixed type, Tashkent, Mumtoz So’z. 2010. [in Russian].
  28. T. Sandev, R. Metzler and Z. Tomovsky, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative, J. Phys. A: Math. Theor. 44, 255203, 2011.
  29. N. H. Tuan, L. N. Huynh, D. Baleanu and N. H. Can, On a terminal value problem for a generalization of the fractional diffusion equation with hyper-Bessel operator, Math Meth Appl Sci. 25 (1), 2019. https://doi.org/10.1002/mma.6087
  30. N. H. Tuan, T. N. Thach, N. H. Can and D. O’Regan, Regularization of a multidimensional diffusion equation with conformable time derivative and discrete data, Math Meth Appl Sci. 44, 2879-2891, 2021. https://doi.org/10.1002/mma.6133
  31. N. H. Tuan, Y. Zhou, T. N. Thach and N. H. Can, Initial inverse problem for the nonlinear fractional Rayleigh-Stokes equation with random discrete data, Commun. Nonlinear Sci. Numer. Simul. 78, 2019, 104873, ISSN 1007-5704, https://doi.org/10.1016/j.cnsns.2019.104873.
  32. K. Zhang, Positive solution of nonlinear fractional differential equations with Caputo-like counterpart hyper-Bessel operators, Math Meth Appl Sci. 43 (6), 2845-2857, 2019. https://doi.org/10.1002/mma.6086
  33. K. Zhang, Existence results for a generalization of the time-fractional diffusion equation with variable coefficients, Bound Value Probl. 10, 2019. https://doi.org/10.1186/s13661-019-1125-0