**Title:** Frankl-Type Problem for a Mixed Type Equation Associated Hyper-Bessel Differential Operator

**Montes Taurus J. Pure Appl. Math.** / ISSN: 2687-4814

**Article ID:** MTJPAM-D-20-00053; **Volume 3 / Issue 3 / Year 2021 (Special Issue)**, Pages 327-333

**Document Type:** Research Paper

**Author(s):** Bakhodirjon Toshtemirov ^{a}

^{a}V. I. Romanovskiy Institute of Mathematics Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan

Received: 25 December 2020, Accepted: 6 April 2021, Published: 25 April 2021.

**Corresponding Author:** Bakhodirjon Toshtemirov (Email address: toshtemirovbh@gmail.com)

**Full Text:** PDF

**Abstract**

The main target of the present research is the Frankl-type problem for mixed type equation with the Caputo-like counter part hyper-Bessel fractional derivative. We prove a unique solvability of this problem under certain conditions on given data. For this aim we use energy integrals (for the uniqueness) and method of integral equations (for the existence).

**Keywords:** Frankl-type problem, Mixed equation, Caputo-like counterpart hyper-Bessel operator, Integral equation

**References:**

- P. Agarwal, A. S. Berdyshev and E. T. Karimov,
*Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative*, Result. Math.**71 (3)**, 1235-1257, 2017. - P. Agarwal, M. Chand, D. Baleanu et al.
*On the solutions of certain fractional kinetic equations involving k-Mittag-Leffler function*. Adv. Differ. Equ.**249**, 2018. https://doi.org/10.1186/s13662-018-1694-8 - F. Al-Musalhi, N. Al-Salti and E. Karimov,
*Initial boundary value problems for fractional differential equation with hyper-Bessel operator*. Fract. Calc. Appl. Anal.**21 (1)**, 200-219, 2018. - A. S. Berdyshev, A. Cabada and E. T. Karimov,
*On a non-local boundary problem for a parabolic-hyperbolic equation involving Riemann-Liouville fractional differential operator*, Nonlinear Analysis**75**, 3268-3273, 2012. - V. M. Bulavitsky,
*Closed form of the solutions of some boundary-value problems for anomalous diffusion equation with Hilfer’s generalized derivative*, Cybernetics and Systems Analysis**30 (4)**, 570-577, 2014. - I. Dimovski,
*Operational calculus for a class of differential operators*, C. R. Acad. Bulg. Sci.**19 (12)**, 1111-1114, 1996. - T. D. Djuraev, A. Sopuev and M. Mamajonov,
*Boundary-value problems for the parabolic-hyperbolic type equations*, Tashkent, FAN. 1986. [in Russian]. - F. I. Frankl,
*On a new boundary-value problem for the equation*, Uch. Zap.Moscow Univ.**152**, 1951. - S. Kh. Gekkieva,
*A boundary value problem for the generalized transfer equation with a fractional derivative in a semi-infinite domain*, Izv. Kabardino-Balkarsk. Nauchnogo Tsentra RAN**8 (1)**, 6-8, 2002. [in Russian]. - S. Jain and P. Agarwal,
*On new applications of fractional calculus*, Bol. Soc. Parana. Mat.**37**, 113-118, 2019. - T. Sh. Kal’menov and M. A. Sadybekov,
*On a Frankl-type problem for a mixed parabolic-hyperbolic equation*, Sib. Math. J.**58**, 227-231, 2017. - E. T. Karimov,
*Boundary value problems for parabolic-hyperbolic type equations with spectral parameter*, PhD Thesis, Tashkent, 2006. - E. T. Karimov,
*Tricomi type boundary value problem with integral conjugation condition for a mixed type equation with Hilfer fractional operator*, Bulletin of the Institute of Mathematics**2 (1)**, 19-26, 2019. - E. T. Karimov.
*Boundary value problems with integral transmitting conditions and inverse problems for integer and fractional order differential equations*, DSc Thesis. V. I. Romanovkiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent, pp. 207. 2020. - E. T. Karimov,
*Frankl-type problem for a mixed type equation with the Caputo fractional derivative*, Lobachevskii J Math.**41**, 1829-1836, 2020. https://doi.org/10.1134/S1995080220090152 - E. T. Karimov, A. S. Berdyshev and N. A. Rakhmatullaeva,
*Unique solvability of a non-local problem for mixed-type equation with fractional derivative*, Math Meth Appl Sci.**40 (8)**, 2994-2999, 2017. - E. T. Karimov and B. H. Toshtemirov,
*Tricomi type problem with integral conjugation condition for a mixed type equation with the hyper-Bessel fractional differential operator*. Bulleten of the Institute of Mathematics,**4 (1)**, 9-14, 2019. - S. Kerbal, E. Karimov and N. Rakhmatullayeva,
*Non-local boundary problem with integral form transmitting condition for fractional mixed type equation in a composite domain*, Mat. Model. Nat. Phenom.**12 (3)**, 95-104, 2017. - V. Kiryakova,
*Generalized Fractional Calculus and Applications*, Pitman Res. Notes in Math. Ser., 301. Longman and J. Wiley, Harlow and N. York, 1994. - A. M. Laypanova, A. O. Zheldasheva and V. N. Lesev,
*Analog of the Francl problem for the mixed second order equation with variable coefficients at younger members*, Fundamental research,**8**, 1351-1355, 2014. - N. H. Luc, L. N. Huynh, D. Baleanu et al.
*Identifying the space source term problem for a generalization of the fractional diffusion equation with hyper-Bessel operator*. Adv Differ Equ.**261**, 2020. https://doi.org/10.1186/s13662-020-02712-y - A. M. Nakhushev,
*Problems with shift for partial differential equations*, Moscow, Nauka. 2006. [in Russian]. - Z. A. Nakhusheva,
*Nonlocal boundary value problems for main and mixed type differential equations*, Nalchik. 2011. [in Russian]. - A. V. Pskhu,
*Partial Differential Equations of Fractional Order*, Moscow, Nauka. 2005. [in Russian]. - A. V. Pskhu,
*The Frankl’ problem for a Hyperbolic-parabolic equation*, Differ. Equations**39 (1)**, 112-120, 2013. - J. E. Restrepo, M. Ruzhansky and D. Suragan,
*Explicit representations of solutions for linear fractional differential equations with variable coefficients*, arXiv.org/math/arXiv:2006.15356v1, pp. 27. 2020. - M. S. Salakhitdinov and A. K. Urinov,
*To the spectral theory of equations of mixed type*, Tashkent, Mumtoz So’z. 2010. [in Russian]. - T. Sandev, R. Metzler and Z. Tomovsky,
*Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative*, J. Phys. A: Math. Theor.**44**, 255203, 2011. - N. H. Tuan, L. N. Huynh, D. Baleanu and N. H. Can,
*On a terminal value problem for a generalization of the fractional diffusion equation with hyper-Bessel operator*, Math Meth Appl Sci.**25 (1)**, 2019. https://doi.org/10.1002/mma.6087 - N. H. Tuan, T. N. Thach, N. H. Can and D. O’Regan,
*Regularization of a multidimensional diffusion equation with conformable time derivative and discrete data*, Math Meth Appl Sci.**44**, 2879-2891, 2021. https://doi.org/10.1002/mma.6133 - N. H. Tuan, Y. Zhou, T. N. Thach and N. H. Can,
*Initial inverse problem for the nonlinear fractional Rayleigh-Stokes equation with random discrete data*, Commun. Nonlinear Sci. Numer. Simul.**78**, 2019, 104873, ISSN 1007-5704, https://doi.org/10.1016/j.cnsns.2019.104873. - K. Zhang,
*Positive solution of nonlinear fractional differential equations with Caputo-like counterpart hyper-Bessel operators*, Math Meth Appl Sci.**43 (6)**, 2845-2857, 2019. https://doi.org/10.1002/mma.6086 - K. Zhang,
*Existence results for a generalization of the time-fractional diffusion equation with variable coefficients*, Bound Value Probl.**10**, 2019. https://doi.org/10.1186/s13661-019-1125-0