Article ID: MTJPAM-D-20-00054

Title: Fekete-Szegö Problems for the kth Root Transform of Subclasses of Starlike and Convex Functions with Respect to Symmetric Points

Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-20-00054; Volume 3 / Issue 3 / Year 2021 (Special Issue), Pages 172-181

Document Type: Research Paper

Author(s): Trailokya Panigrahi a , Gangadharan Murugusundaramoorthy b , Susanta Kumar Mohapatra c

aDepartment of Mathematics, Institute of Mathematics and Applications, Andharua, Bhubaneswar, Odisha, India

bSchool of Advanced Sciences, VIT Deemed to be University, Vellore-632014, Tamilnadu, India

cDepartment of Mathematics, Kalinga Institute of Social Sciences (KISS) Deemed to be University, Bhubaneswar-751024, Odisha, India

Received: 26 December 2020, Accepted: 1 February 2021, Published: 25 April 2021.

Corresponding Author: Trailokya Panigrahi (Email address:

Full Text: PDF


In the present paper, sharp upper bounds for the coefficient functional |b_{2k+1}-\mu b_{k+1}^{2}| corresponding to the k^{th} root transformation of certain normalized analytic function f(z)=z+\sum_{n=2}^{\infty}a_{n}z^{n} defined on the unit disk  \Delta  in the complex plane where the function  f(z)  belong to certain subclasses of starlike and convex functions with respect to symmetric points are obtained. Further, Fekete-Szegö inequalities for the function  \frac{z}{f(z)}  and the inverse function f for the above mentioned classes are investigated and pointed out the special cases as remark.

Keywords: Analytic functions, Subordination, kthroot transformation, Starlike functions, Convex functions, Fekete-Szegö inequality

  1. O. P. Ahuja and M. Jahangiri, Fekete-Szegö problem for a unified class of analytic functions, Panamer. Math. J. 7 (2), 67-78, 1997.
  2. R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, The Fekete-Szegö coefficient functional for the transforms of analytic functions, Bull. Iranian Math. Soc. 35 (2), 119-142, 2009.
  3. R. M. Ali, V. Ravichandran and N. Seerivasagan, Coefficient bounds for p-valent functions, Appl. Math. Comput. 187 (1), 35-46, 2007.
  4. L. de Branges de Bourcia, A proof of Bieberbach conjecture, Acta Mathematica, 137-152, 1985.
  5. N. E. Cho and S. Owa, On the Fekete-Szegö problem for strongly α logarithmic quasi convex functions, Southeast Asian Bull. Math. 28 (3), 421-430, 2004.
  6. R. N. Das and P. Singh, On subclasses of schlicht mapping, Indian J. Pure Appl. Math. 8, 864-872, 1977.
  7. R. M. El-Ashwah, M. K. Aouf and F. M. Abdulkaren, Fekete-Szegö inequality for certain class of analytic function of complex order, Int. J. Open Problem Complex Anal. 6 (1), 2014.
  8. F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20, 8-12, 1969.
  9. O. S. Kwon and N. E. Cho, On the Fekete-Szegö problem for certain analytic functions, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 10 (4), 265-271, 2003.
  10. S. S. Miller and P. T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York, 2000.
  11. T. Panigrahi and S. K. Mohapatra, Coefficient functional for the kth root transform of analytic function and applications to fractional derivatives, Fract. Diff. Cal. 8 (1), 191-203, 2018.
  12. T. Panigrahi and G. Murugusundaramoorthy, The Fekete-Szegö inequality for subclass of analytic function of complex order, Adv. Stud. Contemp. Math. 24 (1), 67-75, 2014.
  13. T. RamReddy, D. Shalini, D. Vamshee Krishna and B.Venkateswarlu, Coefficient inequality for transforms of certain subclass of analytic functions, Acta Et Commentationes Universitati Startuensis De Mathematica, 21 (2), 185-193, 2017.
  14. V. Ravichandran, Starlike and convex functions with respect to conjugate points, Acta Math. Acad. Paedagog. Nyházi (N. S) 20 (1), 31-37, 2004.
  15. K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11, 72-75, 1959.
  16. T. N. Shanmugam, C. Ramachandran and V. Ravichandran, Fekete-Szegö problem for subclasses of starlike functions with respect to symmetric points, Bull. Korean Math. Soc. 43, 589-598.