Title: Nadler’s Fixed Point Theorem for Set-Valued Mappings in b-Metric Spaces
Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814
Article ID: MTJPAM-D-21-00017; Volume 4 / Issue 3 / Year 2022 (Special Issue), Pages 131-138
Document Type: Research Paper
Author(s): Stefan Czerwik a
aInstitute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland
Received: 23 January 2021, Accepted: 7 February 2021, Published: 18 April 2022.
Corresponding Author: Stefan Czerwik (Email address: steczerw@gmail.com)
Full Text: PDF
Abstract
In the paper we present the fixed point theorem for set-valued contraction mappings in generalized b-metric spaces, which generalizes the famous Nadler’s fixed point theorem for such mappings in metric spaces. Also some local fixed point theorems for such multi-valued mappings are presented.
Keywords: Metric space, b-metric space, Generalized b-metric space, Fixed point
References:- S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3, 133–181, 1922.
- S. Cobzas and S. Czerwik, The completion of generalized b-metric spaces and fixed points, Fixed Point Theory 21 (1), 133–150, 2020.
- H. Covitz and S. B. Nadler, Jr., Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8, 5–11, 1970.
- S. Czerwik, A fixed point theorem for a system of multi-valued transformations, Proc. Amer. Math. Soc. 55, 136–139, 1976.
- S. Czerwik, Some inequalities, characteristic roots of a matrix and Edelstein’s fixed point theorem, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom Phys. 24, 827–828, 1976.
- S. Czerwik, Multi-valued contraction mappings in metric spaces, Aeq. Math. 16 (3), 297–302, 1977.
- S. Czerwik, An extension of Schauder’s fixed point principle, Bull. Acad. Polen. Sci. Ser. Sci. Math. Astronom. Phys. 25, 569–571, 1977.
- S. Czerwik, Fixed point theorems and special solutions of functional equations, Silesian Univer., Katowice, Poland, 1980, 1–83.
- S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1, 5–11, 1993.
- S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena 46 (2), 263–276, 1998.
- J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74, 305–309, 1968.
- C. F. K. Jung, On generalized complete metric spaces, Bull. Amer. Math. Soc. 75, 113–116, 1969.
- W. A. J. Luxemburg, On the convergence of successive approximations in the theory of ordinary differential equations, II, Koninki, Nederl. Akademie van Wetenschappen, Amsterdam, Proc. Ser. A(5), 61, and Indag. Math. (5), 20, 540–546, 1958.
- S. B. Nadler, Jr., Multi-valued contraction mappings, Pac. J. Math. 30, 415–487, 1969.
- S. B. Nadler, Jr., Some results on multi-valued contraction mappings, Lecture Notes in Mathematics 171, 64–69, 1970.
- M. Paluszyński and K. Stempak, On quasi-metric and metric spaces, Proc. Amer. Math. Soc. 137 (12), 4307–4312, 2009.