**Title:** Analytic Solvability of a Class of Symmetric Nonlinear Second Order Differential Equations

**Montes Taurus J. Pure Appl. Math.** / ISSN: 2687-4814

**Article ID:** MTJPAM-D-21-00020; **Volume 4 / Issue 3 / Year 2022 (Special Issue)**, Pages 80-92

**Document Type:** Research Paper

**Author(s):** Rabha Waell Ibrahim ^{a}

^{a}IEEE: 94086547, Kuala Lumpur, 59200, Malaysia

Received: 18 February 2021, Accepted: 25 September 2021, Published: 27 October 2021.

**Corresponding Author:** Rabha Waell Ibrahim (Email address: rabhaibrahim@yahoo.com)

**Full Text:** PDF

**Abstract**

In this study, we introduce a solvability of special type of symmetric algebraic differential equations (SADEs) in virtue of geometric function theory by considering a symmetric differential operator. The analytic solutions of the SADEs are considered by utilizing the Caratheodory functions joining the subordination concept. A class of Caratheodory functions involving special functions gives the upper bound solution.

**Keywords:** Analytic function, Subordination, Univalent function, Open unit disk, Differential equations

**References:**

- E. J. Beggs and S. Majid,
*Quantum complex structures*, Quantum Riemannian Geometry, Springer, Cham, 527–564, 2020. - C. Fernando, P. Chartier, A. Escorihuela-Tomas and Y. Zhang,
*Compositions of pseudo-symmetric integrators with complex coefficients for the numerical integration of differential equations*, Journal of Computational and Applied Mathematics**113006**, 1–19, 2020. - G. G. Gary,
*Research questions on meromorphic functions and complex differential equations*, Computational Methods and Function Theory**17 (2)**, 195–209, 2017. - R. W. Ibrahim,
*Fractional algebraic nonlinear differential equations in a complex domain*, Afrika Matematika**26 (3-4)**, 385–397, 2015. - R. W. Ibrahim and D. Baleanu,
*On a combination of fractional differential and integral operators associated with a class of normalized functions*, AIMS Mathematics**6 (4)**, 4211–4226, 2021. - R. W. Ibrahim and D. Baleanu,
*On quantum hybrid fractional conformable differential and integral operators in a complex domain*, RACEF-Naturales. Serie A. Matematicas**115 (1)**, 1–13, 2021. - R. W. Ibrahim and D. Baleanu,
*Entire solutions of a class of algebraic Briot-Bouquet differential equations utilizing majority concept*, Advances in Difference Equations**1**, 1–12, 2020. - R. W. Ibrahim and M. Darus,
*New symmetric differential and integral operators defined in the complex domain*, Symmetry**11 (7)**, 906, 2019. - R. W. Ibrahim and M. Darus,
*On a new solution of fractional differential equation using complex transform in the unit disk*, Mathematical and Computational Applications**19 (2)**, 152–160, 2014. - R. W. Ibrahim, R. M. Elobaid and S. J. Obaiys,
*On the connection problem for Painleve differential equation in view of geometric function theory*, Mathematics**8 (7)**, 1198, 2020. - R. W. Ibrahim and J. M. Jahangiri,
*Boundary fractional differential equation in a complex domain*, Boundary Value Problems**2014 (1)**, 1–11, 2014. - Y. Masafumi,
*Monodromy of confluent hypergeometric system with two irregular singular points (Algebraic analytic methods in complex partial differential equations)*, Kyoto University Research Information Repository**2020**, 129–136, 2017. - S. S. Miller and P. T. Mocanu,
*Differential subordinations: theory and applications*, CRC Press, 2000. - S. Norbert,
*Nevanlinna theory, normal families, and algebraic differential equations*, Cham: Springer, 2017. - W. Qiongyan, M. Liu and N. Li,
*On algebraic differential equations concerning the Riemann-zeta function and the Euler-gamma function*, arXiv preprint arXiv:**2005**, 2020. - S. Ruscheweyh,
*Convolutions in geometric function theory*, Vol.**83**, Gaetan Morin Editeur Ltee, 1982. - G. Yongyi, X. Zheng and F. Meng,
*Painleve analysis and abundant meromorphic solutions of a class of nonlinear algebraic differential equations*, Mathematical Problems in Engineering**2019**, 1–12, 2019.