Article ID: MTJPAM-D-21-00021

Title: On Some Classes of Fredholm-Volterra Integral Equations in Two Variables


Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-21-00021; Volume 4 / Issue 3 / Year 2022 (Special Issue), Pages 25-32

Document Type: Research Paper

Author(s): Adrian Petruşel a , Ioan A. Rus b

aDepartment of Mathematics, Babeş-Bolyai University Cluj-Napoca and Academy of Romanian Scientists Bucharest, Romania

bDepartment of Mathematics, Babeş-Bolyai University Cluj-Napoca, Romania

Received: 26 February 2021, Accepted: 16 June 2021, Published: 9 July 2021.

Corresponding Author: Adrian Petruşel (Email address: petrusel@math.ubbcluj.ro)

Full Text: PDF


Abstract

Let a, b, c ∈ ℝ2, ai < ci < bi, i ∈ {1, 2}, [a, b]:=[a1, b1]×[a2, b2], let (\mathbb{B},|\cdot |) be a (real or complex) Banach space, K\in C([a,b]\times [a,c]\times \mathbb{B},\mathbb{B}), H\in C([a,b]\times [a,b]\times \mathbb{B},\mathbb{B}) and g\in C([a,b],\mathbb{B}). In this paper we study the following integral equation

u(x)=\int\limits_{[a,c]}K(x,s,u(s))ds +\int\limits_{[a,x]}H(x,s,u(s))ds +g(x),\ x=(x_1,x_2)\in [a,b].

Using the Fibre Contraction Principle we give existence and uniqueness results, and we prove the convergence of the successive approximations. By the weakly Picard operator theory (in the framework of the ordered Banach space \mathbb{B}) we give Gronwall lemma type results and comparison theorems. Some other similar type of Fredholm-Volterra integral equations are also studied.

Keywords: Fredholm-Volterra integral equation, Existence and uniqueness, Successive approximations, Integral inequality, Gronwall lemma, Comparison lemma, Fibre contraction principle

References:
  1. D. Bainov and P. Simenonov, Integral Inequalities and Applications, Kluwer Acad. Publ., Dordrecht, 1992.
  2. H. Brunner and E. Messina, Time-stepping methods for Volterra-Fredholm integral equations, Rend. Mat. (Roma) 23, 329–342, 2003.
  3. C. Corduneanu, Bielecki’s method in the theory of integral equations, Ann. Univ. Mariae Curie-Sklodowska, Sec. A 38, 23–40, 1984.
  4. C. Corduneanu, Integral Equation and Applications, Cambridge Univ. Press, Cambridge, 1991.
  5. M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Oxford, 1964.
  6. M. Kwapisz, Weighted norms and existence and uniqueness of Lp solutions for integral equations in several variables, J. Diff. Eq. 97, 246–262, 1992.
  7. N. Lungu and I. A. Rus, On a functional Volterra-Fredholm integral equations, via Picard operator, J. Math. Inequalities 3, 519–527, 2009.
  8. B. G. Pachpatte, Multidimensional Integral Equations and Inequalities, Atlantis Press, Amsterdam-Paris, 2011.
  9. A. Petruşel and I. A. Rus, A class of functional-integral equations with application to a bilocal problem, In: T.M. Rassias, L. Toth (eds.), Topics in Mathematical Analysis and Applications, 609–631, Springer, Berlin, 2014.
  10. A. Petruşel, I. A. Rus and M. A. Şerban, Fixed point structures, invariant operators, invariant partitions and applications to Carathéodory integral equations, 497–515. In: P.M. Pardalos, T.M. Rassias (eds.), Contributions in Mathematics and Engineering, Springer, 2016.
  11. R. Precup, Methods in Nonlinear Integral Equations, Kluwer Acad. Publ., Dordrecht, 2002.
  12. I. A. Rus, Picard operators and applications, Sci. Math. Japon. 58 (1), 191–219, 2003.
  13. I. A. Rus, Some nonlinear functional differential and integral equations, via weakly Picard operator theory: a survey, Carpathian J. Math. 26 (2), 230–258, 2010.
  14. I. A. Rus, Some variants of contraction principle in the case of operators with Volterra property: step by step contraction principle, Adv. Theory of Nonlinear Anal. Appl. 3 (3), 111–120, 2019.
  15. I. A. Rus, A. Petruşel and G. Petruşel, Fixed Point Theory, Cluj Univ. Press Cluj-Napoca, 2003.
  16. I. A. Rus and M. A. Şerban, Operators on infinite dimensional cartesian product, Analele Univ. Vest Timişoara, Mat. Infor. 48 (1-2), 253–263, 2010.
  17. M. A. Şerban, Teoria punctului fix pentru operatori definiţi pe produs cartesian, Presa Univ. Clujeană, Cluj-Napoca, 2002.