Article ID: MTJPAM-D-21-00025

Title: Lucas Cube vs Zeckendorf’s Lucas Code


Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-21-00025; Volume 3 / Issue 2 / Year 2021, Pages 47-50

Document Type: Research Paper

Author(s): Sadjia Abbad a , Hacène Belbachir b , Ryma Ould-Mohamed c

aUSTHB, Faculty of Mathematics, RECITS Laboratory, BP 32 El-Alia, Bab-Ezzouar 16111, Algiers, Algeria. Saad Dahlab University, BP 270, Route de Soumaa, Blida, Algeria

bUSTHB, Faculty of Mathematics, RECITS Laboratory, BP 32 El-Alia, Bab-Ezzouar 16111, Algiers, Algeria

cUSTHB, Faculty of Mathematics, RECITS Laboratory, BP 32 El-Alia, Bab-Ezzouar 16111, Algiers, Algeria. University of Algiers 1, 2 Rue Didouche Mourad, Alger Ctre 16000, Algiers, Algeria

Received: 29 March 2021, Accepted: 12 April 2021, Published: 15 May 2021.

Corresponding Author: Ryma Ould-Mohamed (Email address: ryma.ouldmohamed@gmail.com)

Full Text: PDF


Abstract

The theorem of Zeckendorf states that every positive integer n can be uniquely decomposed as a sum of non consecutive Lucas numbers in the form n = ∑i biLi, where bi ∈ {0,1} and satisfy b0b2 = 0. The Lucas string is a binary string that do not contain two consecutive 1’s in a circular way. In this note, we derive a bijection between the set of Zeckendorf’s Lucas codes and the set of vertices of the Lucas’ strings.

Keywords: Fibonacci numbers, Lucas numbers, Fibonacci cube, Lucas cube

References:
  1. J. Azarija, S. Klavžar, J. Lee and Y. Rho, Connectivity of Fibonacci cubes, Lucas cubes, and generalized cubes, Discrete Math. Theor. Comput. Sci. 17, 79–88, 2015.
  2. J. L. Brown, JR, Unique representations of integers as sums of distinct Lucas numbers, Fibonacci Q. 7, 243–252, 1969.
  3. W.-J. Hsu, Fibonacci cubes a new interconnection topology, IEEE Trans. Parallel Distrib. Syst. 4 (1), 3–12, 1992.
  4. S. Klavžar, On median nature and enumerative properties of Fibonacci-like cubes, Discrete Math. 299, 145–153, 2005.
  5. S. Klavžar, Structures of Fibonacci cubes : a survey, J. Comb. Optim. 25, 505–522, 2013.
  6. S. Klavžar and M. Mollard, Cube polynomial of Fibonacci and Lucas cube, Acta Appl. Math. 117, 93–105, 2012.
  7. T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001.
  8. M. Mollard, Maximal hypercubes in Fibonacci and Lucas cubes, Discrete Appl. Math. 160, 2479–2483, 2012.
  9. E. Munarini, C. Perelli Cippo and N. Zagaglia Salvi, On the Lucas cubes, The Fibonacci Quarterly 39 (1), 12–21, 2001.
  10. A. Taranenko, A new characterization and a recognition algorithm of Lucas cubes, Discrete Math. Theor. Comput. Sci. 15 (3), 31–40, 2013.
  11. E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bulletin de la socié té Royale de Sciences de Liège 41, 179–182, 1972.