Title: Lucas Cube vs Zeckendorf’s Lucas Code
Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814
Article ID: MTJPAM-D-21-00025; Volume 3 / Issue 2 / Year 2021, Pages 47-50
Document Type: Research Paper
Author(s): Sadjia Abbad a , Hacène Belbachir
b , Ryma Ould-Mohamed
c
aUSTHB, Faculty of Mathematics, RECITS Laboratory, BP 32 El-Alia, Bab-Ezzouar 16111, Algiers, Algeria. Saad Dahlab University, BP 270, Route de Soumaa, Blida, Algeria
bUSTHB, Faculty of Mathematics, RECITS Laboratory, BP 32 El-Alia, Bab-Ezzouar 16111, Algiers, Algeria
cUSTHB, Faculty of Mathematics, RECITS Laboratory, BP 32 El-Alia, Bab-Ezzouar 16111, Algiers, Algeria. University of Algiers 1, 2 Rue Didouche Mourad, Alger Ctre 16000, Algiers, Algeria
Received: 29 March 2021, Accepted: 12 April 2021, Published: 15 May 2021.
Corresponding Author: Ryma Ould-Mohamed (Email address: ryma.ouldmohamed@gmail.com)
Full Text: PDF
Abstract
The theorem of Zeckendorf states that every positive integer n can be uniquely decomposed as a sum of non consecutive Lucas numbers in the form n = ∑i biLi, where bi ∈ {0,1} and satisfy b0b2 = 0. The Lucas string is a binary string that do not contain two consecutive 1’s in a circular way. In this note, we derive a bijection between the set of Zeckendorf’s Lucas codes and the set of vertices of the Lucas’ strings.
Keywords: Fibonacci numbers, Lucas numbers, Fibonacci cube, Lucas cube
References:- J. Azarija, S. Klavžar, J. Lee and Y. Rho, Connectivity of Fibonacci cubes, Lucas cubes, and generalized cubes, Discrete Math. Theor. Comput. Sci. 17, 79–88, 2015.
- J. L. Brown, JR, Unique representations of integers as sums of distinct Lucas numbers, Fibonacci Q. 7, 243–252, 1969.
- W.-J. Hsu, Fibonacci cubes a new interconnection topology, IEEE Trans. Parallel Distrib. Syst. 4 (1), 3–12, 1992.
- S. Klavžar, On median nature and enumerative properties of Fibonacci-like cubes, Discrete Math. 299, 145–153, 2005.
- S. Klavžar, Structures of Fibonacci cubes : a survey, J. Comb. Optim. 25, 505–522, 2013.
- S. Klavžar and M. Mollard, Cube polynomial of Fibonacci and Lucas cube, Acta Appl. Math. 117, 93–105, 2012.
- T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001.
- M. Mollard, Maximal hypercubes in Fibonacci and Lucas cubes, Discrete Appl. Math. 160, 2479–2483, 2012.
- E. Munarini, C. Perelli Cippo and N. Zagaglia Salvi, On the Lucas cubes, The Fibonacci Quarterly 39 (1), 12–21, 2001.
- A. Taranenko, A new characterization and a recognition algorithm of Lucas cubes, Discrete Math. Theor. Comput. Sci. 15 (3), 31–40, 2013.
- E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bulletin de la socié té Royale de Sciences de Liège 41, 179–182, 1972.