**Title:** The Generalized Fibonacci Sequences on an Integral Domain

**Montes Taurus J. Pure Appl. Math.** / ISSN: 2687-4814

**Article ID:** MTJPAM-D-21-00026; **Volume 3 / Issue 2 / Year 2021**, Pages 60-69

**Document Type:** Research Paper

^{a}Department of Mathematics, Akdeniz University, 07058 Antalya, Turkey

Received: 1 April 2021, Accepted: 2 May 2021, Published: 23 May 2021.

**Corresponding Author:** Mustafa Alkan (Email address: alkan@akdeniz.edu.tr)

**Full Text:** PDF

**Abstract**

In the literature, there are many sequences of both numbers and polynomials as Fibonacci numbers are generated. In this paper, we observe that it is not necessary to discriminate among them for statements and results of sequences of both numbers and polynomials.

**Keywords:** Integral domain, Generating Function, Generalized Fibonacci Polynomials, Generalized Lucas Polynomials, Generalized Humbert Polynomials, Binet Formula

**References:**

- Z. Akyuz and S. Halici,
*Some identities deriving from the nth power of a special matrix*, Adv. in Dif.**2012 (23)**, 2012. - Z. Akyuz and S. Halici,
*On some combinatorial identities involving the term of generalized Fibonacci and Lucas sequences*, Hacettepe J. Math.**42 (4)**, 431–435, 2013. - G. E. Bergum and V. E. Hoggatt,
*Sums and products for recurring sequences*, The Fibonacci Quarterly**13 (2)**, 115–120, 1975. - G. S Cheon, H. Kim and L. W. Shapiro,
*A generalization of Lucas polynomial sequence*, Discrete Appl. Math.**157 (5)**, 920–927, 2009. - K. A Dilcher,
*Generalization of Fibonacci polynomials and a representation of Gegenbauer polynomials of integer order*, Fibonacci Quart.**25 (4)**, 300–303, 1987. - S. Falcón,
*On the*, Int. J. Contemp Math. Sci.*k*-Lucas numbers**6 (21-24)**, 1039–1050, 2011. - S. Falcón and Á. Plaza,
*On the Fibonacci*, Chaos Solitons Fractals*k*-numbers**32 (5)**, 1615–1624, 2007. - S. Falcon and Á. Plaza,
*The*Chaos, Solitons & Fractals*k*-Fibonacci sequence and the Pascal 2-triangle**33 (1)**, 38–49, 2007. - S. Falcon and Á. Plaza,
*The*, Chaos, Solitons & Fractals*k*-Fibonacci hyperbolic functions**38 (2)**, 409–420, 2008. - S. Falcon and Á. Plaza,
*On*, Chaos, Solitons & Fractals*k*-Fibonacci sequences and polynomials and their derivatives**39**, 1005–1019, 2009. - H. Feng and Z. Zhang,
*Computational formulas for convoluted generalized Fibonacci and Lucas numbers*, Fibonacci Quart.**41 (2)**, 144–151, 2003. - A. F. Horadam,
*Basic properties of a certain generalized sequence of numbers*, The Fibonacci Quarterly**3 (2)**, 161–176, 1965. - A. F. Horadam,
*Tschebyscheff and other functions associated with the sequence*, The Fibonacci Quarterly*W*_{n}(*a*,*b*;*p*,*q*)**7 (1)**, 14–22, 1969. - A. F. Horadam,
*A synthesis of certain polynomial sequences*In: G. E. Bergum, A. N. Philippou, A. F. Horadam, editors, Applications of Fibonacci numbers, Vol. 6, Kluwer Academic Publishers, 215–229, Dordrecht, 1996. - L. C. Hsu,
*On Stirling-type pairs and extended Gegenbauer-Humbert-Fibonacci polynomials*, In: G. E. Bergum, A. N. Philippou, A. F. Horadam, editors. Applications of Fibonacci numbers, Vol. 5., Kluwer Academic Publishers, 367–377, Dordrecht, 1993. - L. C. Hsu and P. J. S. Shiue,
*Cycle indicators and special functions*, Ann. Comb.**5 (2)**, 179–196, 2001. - N. Jacobson,
*Basic algebra. I., (2nd ed.)*, W. H. Freeman and Company, New York, 1985. - M. Janjic,
*Hessenberg matrices and integer sequences*, J. Integer Seq.**13 (7)**,10 pp, Article 10.7.8, 2010. - M. Janjic,
*Determinants and recurrence sequences*, J. Integer Seq.**15 (3)**, 21 pp., Article 12.3.5, 2012. - T. Koshy,
*Fibonacci and Lucas Numbers with applications*, Wiley-Interscience Publications, 2001. - G. Lee and M. Asci,
*Some properties of the (*, J. Appl. Math., 18 pp, Art. ID 264842, 2012.*p*,*q*)-Fibonacci and (*p*,*q*)-Lucas polynomials - T. Mansour,
*A formula for the generating functions of powers of Horadam’s sequence*, Australasian J. of Combinatorics**30**, 207–212, 2004. - A. Nalli and P. Haukkanen,
*On generalized Fibonacci and Lucas polynomials*, Chaos Solitons Fractals**42 (5)**, 3179–3186, 2009. - G. Ozdemir and Y. Simsek,
*Generating functions for two-variable polynomials related to a family of Fibonacci type polynomials and numbers*, Filomat**30 (4)**, 969–975, 2016. - G. Ozdemir, Y. Simsek and V. G. Milovanovic,
*Generating functions for special polynomials and numbers including Apostol-type and Humbert-type polynomials*, Mediterr. J. Math.**14 (3)**, 1–17, 2017. - J. L. Ramírez,
*Some properties of convolved*, ISRN Combin. Art. ID 759641, 2013.*k*-Fibonacci numbers - J. L. Ramírez ,
*On convolved generalized Fibonacci and Lucas polynomials*, Appl. Math Comput.**229**, 208–213, 2014. - N. Robbins,
*A new formula for Lucas numbers*, Fibonaci Quaterly**29**, 362–363, 1991. - Z. H. Sun,
*On the properties of Newton-Euler pairs*, J. Number Theory**114 (1)**, 88–123, 2005. - H. Tian-Xiao and J. S. Peter,
*On sequences of numbers and polynomials defined by linear recurrence relations of order 2*, Int. J. Math. Math Sci.**21**, Art. ID 709386.356, 2009. - M. E. Waddill and L. Sacks,
*Another generalized Fibonacci sequence*, The Fibonacci Quarterly**5 (3)**, 209–222, 1967. - J. Wang,
*Some new results for the (*, Adv. Differ. Equ.*p*,*q*)-Fibonacci and Lucas polynomials**64**, 15 pp, 2014. - W. Weiping and W. Hui,
*Some results on convolved (*, Ing.Trans. and Special Function*p*,*q*)-Fibonacci polynomials**26 (5)**, 340–356, 2015.. - W. Weiping and W. Hui,
*Generalized Humbert polynomials via generalized Fibonacci polynomials*, Applied Mathematics and Computation**307**, 204–216, 2017. - Y. Yuan and W. Zhang,
*Some identities involving the Fibonacci polynomials*, Fibonacci Quart.**40 (4)**, 314–318, 2002. - W. Zhang,
*Some identities involving the Fibonacci numbers*, Fibonacci Quart.**35 (3)**, 225–229, 1997. - F. Z. Zhao and T. Wang,
*Some identities involving the powers of the generalized Fibonacci numbers*, Fibonacci Quart.**41 (1)**, 7–12, 2003.