Article ID: MTJPAM-D-21-00040

Title: Geometric properties of a family of univalent functions whose derivative lies in a half-plane


Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-21-00040; Volume 4 / Issue 1 / Year 2022, Pages 120-127

Document Type: Research Paper

Author(s): Faroze Ahmad Malik a , Chitaranjan Sharma b

aDepartment of Mathematics, Government Holkar (Model, Autonomous) Science College, Indore (M.P.)-452017, India

bDepartment of Mathematics, Government Holkar (Model, Autonomous) Science College, Indore (M.P.)-452017, India

Received: 5 June 2021, Accepted: 15 November 2021, Published: 11 January 2022.

Corresponding Author: Faroze Ahmad Malik (Email address: malikferooze@gmail.com)

Full Text: PDF


Abstract

Let \mathcal{A} consist of analytic functions f defined in the open unit disk \mathbb{U} satisfying f(0)=0 and f'(0)=1. For 0 ≤ β < 1, let \mathcal{R}(\beta) be the family of functions defined as

\mathcal{R}(\beta):=\left\{f\in\mathcal{A}:\mathrm{Re}\left(f'(\zeta)\right)>\beta,\; \zeta\in\mathbb{U}\right\}.

In this paper, we determine sharp estimates on \left|\frac{\zeta f'(\zeta)}{f(\zeta)}\right| for f\in\mathcal{R}(\beta) and find out the arc-length of the boundary curve \partial(f(\mathbb{U})). Further, we study the inclusion properties of the sequences of partial sums of f(\zeta)=\zeta+\sum_{n=2}^\infty a_n\zeta^n\in\mathcal{R}(\beta).

Keywords: Starlike and convex functions, close-to-convex functions, extremal problems, subordination, arc-length problem

References:
  1. J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. 17 (1), 12–22, 1915.
  2. P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983.
  3. A. W. Goodman, Univalent functions, Vol. I, Mariner Publishing Co., Inc., Tampa, FL, 1983.
  4. F. Gray and S. Ruscheweyh, Functions whose derivatives take values in a half-plane, Proc. Amer. Math. Soc. 104 (1), 215–218, 1988.
  5. D. J. Hallenbeck, Convex hulls and extreme points of some families of univalent functions, Trans. Amer. Math. Soc. 192, 285–292, 1974.
  6. R. R. London, Functions whose derivative has positive real part, Proc. Amer. Math. Soc. 103 (2), 521–524, 1988.
  7. T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104, 532–537, 1962.
  8. T. H. MacGregor, The radius of convexity for starlike functions of order {1\over 2}, Proc. Amer. Math. Soc. 14, 71–76, 1963.
  9. C. Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975.
  10. S. Ruscheweyh, Convolutions in geometric function theory, Séminaire de Mathématiques Supérieures, 83, Presses de l’Université de Montréal, Montreal, QC, 1982.
  11. G. Szegő, Zur Theorie der schlichten Abbildungen, Math. Ann. 100 (1), 188–211, 1928.
  12. D. K. Thomas, On functions whose derivative has positive real part, Proc. Amer. Math. Soc. 98 (1), 68–70, 1986.
  13. P. G. Todorov, On the radius of convexity of functions whose derivative has a positive real part, J. Dyn. Syst. Geom. Theor. 2, 35–41, 2004.