Article ID: MTJPAM-D-21-00043

Title: Nonexistence of global weak solutions of semilinear degenerate hyperbolic equation of the second kind

Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-21-00043; Volume 4 / Issue 2 / Year 2022, Pages 28-36

Document Type: Research Paper

Author(s): Kangqun Zhang a

aDepartment of Mathematics and Physics, Nanjing Institute of Technology, Nanjing, 211167, China

Received: 16 June 2021, Accepted: 14 April 2022, Published: 27 May 2022.

Corresponding Author: Kangqun Zhang (Email address:

Full Text: PDF


In the present paper, we investigate the existence of weak solutions of semilinear degenerate hyperbolic equation of the second kind in C1((0, T),Lp(Ω)) for any p ∈ [1, +∞], n ∈ ℤ+. Our approach is based on analyzing the first Fourier coefficient of solution to establish a scope of lifespan. Finally, we obtain nonexistence of global weak solution of a semilinear hyperbolic equation of the second kind with positive initial data.

Keywords: Hyperbolic equation, characteristic degeneration, the first Fourier coefficient, test function, nonexistence

  1. P. Brenner and W. von Wahl, Global classical solutions of nonlinear wave equations, Math. Z. 176, 87–121, 1981.
  2. R. Courant and D. Hilbert, Methods of mathematical physics, Vol. 1., CUP Archive, 1966.
  3. M. D’Abbicco, The threshold of effective damping for semilinear wave equations, Math. Methods Appl. Sci. 38 (6), 1032–1045, 2015.
  4. V. Georgiev, H. Lindblad and C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math. 119 (6), 1291–1319, 1997.
  5. R. T. Glassey, Blow-up theorems for nonlinear wave equations, Math. Z. 132 (3), 183–203, 1973.
  6. M. G. Grillakis, Regularity and asymptotic behavior of the wave equation with a critical nonlinearity, Ann. of Math. 132 (3), 485–509, 1990.
  7. K. Jörgens, Das Anfangswert problem in Grossen für eine klasse nichtlinearer Wellengleichungen, Math. Z. 77 (1), 295–308, 1961.
  8. K. Jörgens, Nonlinear wave equations, University of Colorado, Department of Mathematics, 1970.
  9. S. Kaplan, On the growth of solutions of quasilinear parabolic equations, Comm. Pure Appl. Math. 16 (3), 305–330, 1963.
  10. J. B. Keller, On solutions of nonlinear wave equations, Comm. Pure Appl. Math. 10 (4), 523–530, 1957.
  11. P. Korman, On blow up of solutions of nonlinear evolution equations, Proc. Amer. Math. Soc. 103 (1), 189–197, 1988.
  12. H. A. Levine, On the nonexistence of global solutions to a nonlinear Euler-Poisson-Darboux equation, J. Math. Anal. Appl. 48 (3), 646–651, 1974.
  13. H. A. Levine, Growth of solutions of generalized nonlinear Euler-Poisson-Darboux equations, Arch. Ration. Mech. Anal. 61 (1), 77–89, 1976.
  14. M.-R. Li, Existence and uniqueness of local weak solutions for the Emden-Fowler wave equation in one dimension, Electron. J. Differ. Equ. 2015 (145), 1–10, 2015.
  15. M.-R. Li, Nonexistence of global solutions of Emden-Fowler type semilinear wave equations with nonpositive energy, Electron. J. Differ. Equ. 2016 (93), 1–10, 2016.
  16. D. Li and H. Huang, Blow-up phenomena of second-order nonlinear differential equations, J. Math. Anal. Appl. 276 (1), 184–195, 2002.
  17. Y. Wakasugi, Critical exponent for the semilinear wave equation with scale invariant damping, In: Fourier Analysis, Trends in Mathematics (Ed. by M. Ruzhansky and V. Turunen), Birkhäuser, Cham., 375–390, 2014.
  18. J. Wirth, Solution representations for a wave equation with weak dissipation, Math. Methods Appl. Sci. 27 (1), 101–124, 2004.
  19. B. Yordanov and Q. Zhang, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal. 231 (2), 361–374, 2006.
  20. K. Zhang, The Cauchy problem for semilinear hyperbolic equation with characteristic degeneration on the initial hyperplane, Math. Methods Appl. Sci. 41 (6), 2429–2441, 2018.
  21. K. Zhang, Nonexistence of global weak solutions of nonlinear Keldysh type equation with one derivative term, Adv. Math. Phys. 2018, 2018; Article ID 3931297.
  22. K. Zhang, Applications of Erd$\acute{e}$lyi-Kober fractional integral for solving time-fractional Tricomi-Keldysh type equation, Fract. Calc. Appl. Anal. 23 (5), 1381–1400, 2020.