Title: Nonexistence of global weak solutions of semilinear degenerate hyperbolic equation of the second kind
Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814
Article ID: MTJPAM-D-21-00043; Volume 4 / Issue 2 / Year 2022, Pages 28-36
Document Type: Research Paper
aDepartment of Mathematics and Physics, Nanjing Institute of Technology, Nanjing, 211167, China
Received: 16 June 2021, Accepted: 14 April 2022, Published: 27 May 2022.
Corresponding Author: Kangqun Zhang (Email address: chkqnju@hotmail.com)
Full Text: PDF
Abstract
In the present paper, we investigate the existence of weak solutions of semilinear degenerate hyperbolic equation of the second kind in C1((0, T),Lp(Ω)) for any p ∈ [1, +∞], n ∈ ℤ+. Our approach is based on analyzing the first Fourier coefficient of solution to establish a scope of lifespan. Finally, we obtain nonexistence of global weak solution of a semilinear hyperbolic equation of the second kind with positive initial data.
Keywords: Hyperbolic equation, characteristic degeneration, the first Fourier coefficient, test function, nonexistence
References:- P. Brenner and W. von Wahl, Global classical solutions of nonlinear wave equations, Math. Z. 176, 87–121, 1981.
- R. Courant and D. Hilbert, Methods of mathematical physics, Vol. 1., CUP Archive, 1966.
- M. D’Abbicco, The threshold of effective damping for semilinear wave equations, Math. Methods Appl. Sci. 38 (6), 1032–1045, 2015.
- V. Georgiev, H. Lindblad and C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math. 119 (6), 1291–1319, 1997.
- R. T. Glassey, Blow-up theorems for nonlinear wave equations, Math. Z. 132 (3), 183–203, 1973.
- M. G. Grillakis, Regularity and asymptotic behavior of the wave equation with a critical nonlinearity, Ann. of Math. 132 (3), 485–509, 1990.
- K. Jörgens, Das Anfangswert problem in Grossen für eine klasse nichtlinearer Wellengleichungen, Math. Z. 77 (1), 295–308, 1961.
- K. Jörgens, Nonlinear wave equations, University of Colorado, Department of Mathematics, 1970.
- S. Kaplan, On the growth of solutions of quasilinear parabolic equations, Comm. Pure Appl. Math. 16 (3), 305–330, 1963.
- J. B. Keller, On solutions of nonlinear wave equations, Comm. Pure Appl. Math. 10 (4), 523–530, 1957.
- P. Korman, On blow up of solutions of nonlinear evolution equations, Proc. Amer. Math. Soc. 103 (1), 189–197, 1988.
- H. A. Levine, On the nonexistence of global solutions to a nonlinear Euler-Poisson-Darboux equation, J. Math. Anal. Appl. 48 (3), 646–651, 1974.
- H. A. Levine, Growth of solutions of generalized nonlinear Euler-Poisson-Darboux equations, Arch. Ration. Mech. Anal. 61 (1), 77–89, 1976.
- M.-R. Li, Existence and uniqueness of local weak solutions for the Emden-Fowler wave equation in one dimension, Electron. J. Differ. Equ. 2015 (145), 1–10, 2015.
- M.-R. Li, Nonexistence of global solutions of Emden-Fowler type semilinear wave equations with nonpositive energy, Electron. J. Differ. Equ. 2016 (93), 1–10, 2016.
- D. Li and H. Huang, Blow-up phenomena of second-order nonlinear differential equations, J. Math. Anal. Appl. 276 (1), 184–195, 2002.
- Y. Wakasugi, Critical exponent for the semilinear wave equation with scale invariant damping, In: Fourier Analysis, Trends in Mathematics (Ed. by M. Ruzhansky and V. Turunen), Birkhäuser, Cham., 375–390, 2014.
- J. Wirth, Solution representations for a wave equation with weak dissipation, Math. Methods Appl. Sci. 27 (1), 101–124, 2004.
- B. Yordanov and Q. Zhang, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal. 231 (2), 361–374, 2006.
- K. Zhang, The Cauchy problem for semilinear hyperbolic equation with characteristic degeneration on the initial hyperplane, Math. Methods Appl. Sci. 41 (6), 2429–2441, 2018.
- K. Zhang, Nonexistence of global weak solutions of nonlinear Keldysh type equation with one derivative term, Adv. Math. Phys. 2018, 2018; Article ID 3931297.
- K. Zhang, Applications of Erd$\acute{e}$lyi-Kober fractional integral for solving time-fractional Tricomi-Keldysh type equation, Fract. Calc. Appl. Anal. 23 (5), 1381–1400, 2020.