Article ID: MTJPAM-D-21-00060

Title: Kenmotsu manifolds with quarter-symmetric non-metric connections


Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-21-00060; Volume 5 / Issue 1 / Year 2023, Pages 78-89

Document Type: Research Paper

Author(s): Sunil Kumar Yadav a , Daya Lal Suthar b

aDepartment of Applied Science and Humanities, United Collage of Engineering & Research, A-31, UPSIDC Industrial Area, Naini-211010, Prayagraj, India

bDepartment of Mathematics, Wollo University, Dessie, P.O. Box: 1145, South Wollo, Amhara Region, Ethiopia

Received: 2 October 2021, Accepted: 19 June 2023, Published: 29 July 2023

Corresponding Author: Sunil Kumar Yadav (Email address: prof_sky16@yahoo.com)

Full Text: PDF


Abstract

We categories Kenmotsu manifold with quarter-symmetric non-metric connections. In relation to this relationship, we examine Ricci soliton on such manifolds. A last example is shown.

Keywords: Ricci soliton, Kenmotsu manifold, quarter-symmetric non-metric connection (๐’ฌ๐’ฎ๐’ฉโ„ณ๐’ž)

References:
  1. C. L. Bejanb and M. Crasmareanu, Ricci Solitons in manifolds with quasi-constant curvature, Publ. Math. Debrecen 78 (1), 235โ€“243, 2011.
  2. T. Q. Binh, L. Tamassy, U. C. De and M. Tarafdar, Some remarks on almost Kenmotsu manifolds, Math. Pannon. (N. S.) 13, 31โ€“39, 2002.
  3. A. M. Blaga, ฮท-Ricci solitons on para-kenmotsu manifolds, Balkan J. Geom. Appl. 20 (1), 1โ€“13, 2015.
  4. D. E. Blair, Contact manifold in Riemannian geometry, Lecture Notes in Mathematics (LNM, vol. 509), Springer Berlin, Heidelberg, 1976.
  5. W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math. 68 (3), 421โ€“450, 1958.
  6. B.-Y. Chen and S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan J. Geom. Appl. 19 (1), 13โ€“21, 2014.
  7. U. C. De, On ฯ•-symmetric Kenmotsu manifolds, Int. Electron. J. Geom. 1 (1), 33โ€“38, 2008.
  8. U. C. De and G. Pathak, On 3-dimensional Kenmotsu manifolds, Indian J. Pure Appl. Math. 35, 159โ€“165, 2004.
  9. U. C. De, A. Yildiz and F. Yaliniz, On ฯ•-recurrent Kenmotsu manifolds, Turkish J. Math. 33 (1), 17โ€“25, 2009.
  10. R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (2), 255โ€“306, 1982.
  11. R. S. Hamilton, The Ricci flow on surfaces, mathematics and general relativity, Contemp. Math. 71, 237โ€“262, 1988; https://doi.org/10.1090/conm/071/954419.
  12. S. K. Hui, S. K. Yadav and A. Patra, Almost conformal Ricci solitons on f-Kenmotsu manifolds, Khayyam J. Math. 1 (5), 84โ€“104, 2019.
  13. J. B. Jun, U. C. De and G.Pathak, On Kenmotsu manifolds, J. Korean Math. Soc. 42, 435โ€“445, 2005.
  14. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24, 93โ€“103, 1972.
  15. C. Ozgur, On weakly symmetric Kenmotsu manifolds, Differ. Geom. Dyn. Syt. 8, 204โ€“209, 2006.
  16. C. Ozgur, On generalized recurrent Kenmotsu manifolds, World Appl. Sci. J. 2, 29โ€“33, 2007.
  17. C. Ozgur and U. C. De, On the quasi-conformal curvature tensor of a Kenmotsu manifolds, Math. Pannon. (N. S.) 17 (2), 221โ€“228, 2006.
  18. C. Patra and A. Bhattacharyya, Quarter symmetric non-metric connection in on Pseudosymmetric Kenmotsu manifolds, Bull. TICMI 17 (2), 1โ€“14, 2013.
  19. G. Pitis, A remarks on Kenmotsu manifolds, Bull. Univ. Brasov, Ser. C 30, 31โ€“32, 1988.
  20. G. P. Pokhariyal, S. K. Yadav and S. K. Chaubey, Ricci solitons on trans-Sasakian manifolds, Differ. Geom. Dyn. Syst. 20, 138โ€“158, 2018.
  21. G. Prerelman, The entropy formula for the Ricci flow and its geometric applications, ArXiv 2002; http://arXiv.org/abs/math/0211159.
  22. G. Prerelman, Ricci flow with surgery on three manifolds, ArXiv 2003; http://arXiv.org/abs/math/0303109.
  23. S. Sasaki and Y. Hatakeyama, On differentiable manifolds with certain structures which are closely related to almost contact structure, Tohoku Math. J. 13, 281โ€“294, 1961.
  24. R. Sharma, Certain results on k-contact and (k,โ€†ฮผ)-contact manifolds, J. Geom. 89, 138โ€“147, 2008.
  25. T. Takahashi, Sasakian ฯ•-symmetric spaces, Tohoku Math. J. 29, 91โ€“113, 1977.
  26. S. Tano, The automorphism groups of almost contact Riemannian mnaifolds, Tohoku Math. J. 21, 21โ€“38, 1969.
  27. S. K. Yadav, Ricci solitons on para-Kรคhler manifolds, Extracta Math. 34 (2), 255โ€“268, 2019.
  28. S. K. Yadav, S. K. Chaubey and R. Prasad, Kenmotsu manifold admitting semi symmetric metric connections, Facta Univ. Ser. Math. Inform. 35 (1), 101โ€“119, 2020.
  29. S. K. Yadav and H. Ozturk, On (ฯต)-almost paracontact metric manifolds with conformal ฮท-Ricci solitons, Differ. Geom. Dyn. Syst. 21, 202โ€“215, 2019.
  30. S. K. Yadav and H. Ozturk, Some results for Ricci and Yamabe soliton on almost Kenmotsu manifolds, Novi Sad J. Math. 2022; https://doi.org/10.30755/NSJOM.13375.
  31. K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker, Inc., New York, 1970.
  32. K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, World Scientific Publishing Co., Springer, 1984.