Title: Truncated exponential based Frobenius-Genocchi and truncated exponential based Apostol type Frobenius-Genocchi polynomials
Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814
Article ID: MTJPAM-D-21-00061; Volume 4 / Issue 1 / Year 2022, Pages 85-96
Document Type: Research Paper
Author(s): Shahid Ahmad Wani a , Junesang Choi b
aDepartment of Mathematics, North Campus, University of Kashmir, Srinagar, India
bDepartment of Mathematics, Dongguk University, Gyeongju 38066, Republic of Korea
Received: 6 October 2021, Accepted: 21 October 2021, Published: 18 November 2021.
Corresponding Author: Junesang Choi (Email address: junesangchoi@gmail.com)
Full Text: PDF
Abstract
The aim of this article is to introduce Frobenius-Genocchi polynomials based on truncated-exponentials and to investigate several of their features, including their summation formulae and monomiality principle formalism. Also, we propose and investigate Apostol type Frobenius-Genocchi polynomials based on truncated exponentials, demonstrating their quasi-monomial aspects and providing various identities for these polynomials via umbral calculus.
Keywords: Truncated exponential polynomials, Frobenius-Genocchi polynomials, Apostol type polynomials, summation formulae, monomiality principle, umbral calculus
References:- M. Ali and S. Khan, Finding results for certain relatives of the Appell polynomials, Bull. Korean Math. Soc. 56 (1), 151–167, 2019; https://doi.org/10.4134/BKMS.b180152.
- L. C. Andrews, Special functions for engineers and applied mathematicians, Macmillan Publishing Company, New York, 1985.
- P. Appell and J. Kampé de Fériet, Fonctions hypergéométriques et hypersphériques: polynômes d’Hermite, Gauthier-Villars, Paris, 1926.
- S. Araci, M. Riyasat, T. Nahid and S. Khan, Certain results for unified Apostol type-truncated exponential-Gould-Hopper polynomials and their relatives, arXiv:2006.12970 [math.GM] (or arXiv:2006.12970v1 [math.GM] for this version).
- R. Barakat, Evaluation of the incomplete Gamma function of imaginary argument by Chebyshev polynomials, Math. Comput. 15 (73), 7–11, 1961; DOI: 10.2307/2003085.
- C. Belingeri, G. Dattoli, S. Khan and P. E. Ricci, Monomiality and multi-index multi-variable special polynomials, Integral Transforms Spec. Funct. 18 (7), 449–458, 2007; https://doi.org/10.1080/10652460701359008.
- G. Bretti, C. Cesarano and P. E. Ricci, Laguerre-type exponentials and generalized Appell polynomials, Comput. Math. Appl. 48 (5-6), 833–839, 2004; https://doi.org/10.1016/j.camwa.2003.09.031.
- L. Carlitz, Eulerian numbers and polynomials, Math. Mag. 32 (5), 247–260, 1959; https://doi.org/10.2307/3029225-https://www.jstor.org/stable/3029225.
- J. Choi, S. Jabee and M. Shadab, Some identities associated with 2-variable truncated exponential based Sheffer polynomial sequences, Commun. Korean Math. Soc. 35 (2), 533–546, 2020; https://doi.org/10.4134/CKMS.c190104.
- W. S. Chung and H. Hassanabadi, Truncated exponential polynomials and truncated coherent states, Eur. Phys. J. Plus 135, 2020; Article ID 556; https://doi.org/10.1140/epjp/s13360-020-00580-9.
- R. Coleman, On the Galois groups of the exponential Taylor polynomials, Enseign. Math. 33, 183–189, 1987.
- G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: a by-product of the monomiality principle, Advanced Special Functions and Applications, (Melfi, 1999), 147–164, Proc. Melfi Sch. Adv. Top. Math. Phys., 1, Aracne, Rome, 2000.
- G. Dattoli, C. Cesarano and D. Sacchetti, A note on truncated polynomials, Appl. Math. Comput. 134 (2-3), 595–605, 2003; https://doi.org/10.1016/S0096-3003(01)00310-1.
- G. Dattoli, S. Lorenzutta, A. M. Mancho and A. Torre, Generalized polynomials and associated operational identities, J. Comput. Appl. Math. 108 (1-2), 209–218, 1999; https://doi.org/10.1016/S0377-0427(99)00111-9.
- G. Dattoli and M. Migliorati, The truncated exponential polynomials, the associated Hermite forms and applications, Int. J. Math. Math. Sci. 2006, 1–10, 2006; Article ID 98175; DOI 10.1155/IJMMS/2006/98175.
- G. Dattoli, M. Migliorati and H. M. Srivastava, Bessel summation formulae and operational methods, J. Comput. Appl. Math. 173, 149–154, 2005.
- G. Dattoli, P. E. Ricci and L. Marinelli, Generalized truncated exponential polynomials and applications, Rend. Istit. Mat. Univ. Trieste 34, 9–18, 2002.
- G. Dattoli, A. Torre and M. Carpanese, The Hermite-Bessel functions: a new point of view on the theory of generalized Bessel functions, Radiat. Phys. Chem. 3 (51), 221–228, 1998.
- R. Dere, Y. Simsek and H. M. Srivastava, A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra, J. Number Theory 133 (10), 3245–3265, 2013; https://doi.org/10.1016/j.jnt.2013.03.004.
- P. Erdös, A theorem of Sylvester and Schur, J. London Math. Soc. 9, 282–288, 1934.
- F. G. Frobenius, Über die Bernoullischen zahlen und die Eulerischen polynome, Sitzungsber. K. Preubischen Akad. Wissenschaft. Berlin, 809–847, 1910.
- F. Gori, Flattened Gaussian beams, Opt. Commun. 107 (5-6), 335–341, 1994.
- H. Joung, Asymptotic expansions of recursion coefficients of orthogonal polynomials with truncated exponential weights, Nagoya Math. J. 165, 79–89, 2002.
- N. U. Khan, M. Aman, T. Usman and J. Choi, Legendre-Gould Hopper-based Sheffer polynomials and operational methods, Symmetry 12, 2020; Article ID 2051; doi:10.3390/sym12122051.
- S. Khan, G. Yasmin and N. Ahmad, On a new family related to truncated exponential and Sheffer polynomials, J. Math. Anal. Appl. 418 (2), 921–937, 2014; http://dx.doi.org/10.1016/j.jmaa.2014.04.028.
- S. Khan, G. Yasmin and N. Ahmad, A Note on truncated exponential-based Appell polynomials, Bull. Malays. Math. Sci. Soc. 40, 373–388, 2017; https://doi.org/10.1007/s40840-016-0343-1.
- I. Kucukoglu and Y. Simsek, Identities and relations on the q-Apostol type Frobenius-Euler numbers and polynomials, J. Korean Math. Soc. 56 (1), 265–284, 2019; https://doi.org/10.4134/JKMS.j180185.
- W. Kumam, H. M. Srivastava, S.A. Wani, S. Araci and P. Kumam, Truncated-exponential-based Frobenius-Euler polynomials, Adv. Diff. Equ. 2019 , 2019; Article ID 530; https://doi.org/10.1186/s13662-019-2462-0.
- Q.-M. Luo, Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions, Taiwanese J. Math. 10 (4), 917–925, 2006; DOI: 10.11650/twjm/1500403883.
- T. Nahid, P. Alam and J. Choi, Truncated-exponential-based Appell-type Changhee polynomials, Symmetry 12, 2020; Article ID 1588; DOI:10.3390/sym12101588.
- H. Ozden, Y. Simsek and H. M. Srivastava, A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl. 60 (10), 2779–2787, 2010; https://doi.org/10.1016/j.camwa.2010.09.031.
- M. A. Özarslan, Unified Apostol-Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl. 62 (6), 2452–2462, 2011; https://doi.org/10.1016/j.camwa.2011.07.031.
- S. Roman, The umbral calculus, Academic Press, New York, 1984.
- I. Schur, Einige Sätze über primzahlen mit anwendungen auf irreduzibilitätsfragen I, Sitzungsberichte Preuss. Akad. Wiss. Phys.-Math. Klasse, 125–136, 1929: Also in Gesammelte Abhandlungen, Band III, 140–151.
- I. Schur, Einige Sätze über primzahlen mit anwendungen auf irreduzibilitätsfragen II, Sitzungsberichte Preuss. Akad. Wiss. Phys.-Math. Klasse, 370–391, 1929: Also in Gesammelte Abhandlungen, Band III, 152–173.
- Y. Simsek, Generating functions for q-Apostol type Frobenius-Euler numbers and polynomials, Axioms 1 (3), 395–403, 2012; https://doi.org/10.3390/axioms1030395.
- Y. Simsek, Generating functions for generalized Stirling type numbers, Array type polynomials, Eulerian type polynomials and their applications, Fixed Point Theory Appl. 2013, 2013; Article ID 87; https://doi.org/10.1186/1687-1812-2013-87.
- Y. Simsek, O. Yurekli and V. Kurt, On interpolation functions of the twisted generalized Frobenius-Euler numbers, Adv. Stud. Contemp. Math. 15 (2), 187–194, 2007.
- H. M. Srivastava, S. Araci, W. A. Khan and M. Acikgöz, A note on the truncated-exponential based Apostol-type polynomials, Symmetry 11 (4), 2019; Article ID 538; https://doi.org/10.3390/sym11040538.
- H. M. Srivastava and J. Choi, Zeta and q-Zeta functions and associated series and integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
- H. M. Srivastava and H. L. Manocha, A treatise on generating functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.
- J. F. Steffensen, The poweriod, an extension of the mathematical notion of power, Acta. Math. 73, 333–366, 1941; DOI: 10.1007/BF02392231.
- Y. Smirnov and A. Turbiner, Lie algebraic discretization of differential equations, Modern Phys. Lett. A 10 (24), 1795–1802, 1995; https://doi.org/10.1142/S0217732395001927.
- B. Y. Yaşar and M. A. Özarslan, Frobenius-Euler and Frobenius-Genocchi polynomials and their differential equations, New Trends Math. Sci. 3 (2), 172–180, 2015.