Article ID: MTJPAM-D-21-00073

Title: Bounds on the covering radius of some classes code, simplex code and MacDonald code in R

Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-21-00073; Volume 4 / Issue 2 / Year 2022, Pages 37-44

Document Type: Research Paper

Author(s): Panchanathan Chella Pandian a

aDepartment of Mathematics, Srimad Andavan Arts and Science College(A), Tiruchirappalli-620005, Tamil Nadu, India

Received: 3 December 2021, Accepted: 2 June 2022, Published: 14 July 2022.

Corresponding Author: Panchanathan Chella Pandian (Email address:;

Full Text: PDF


In this paper, study of the codes in R ={\mathbb Z_2}\mathbb R, where \mathbb R={\mathbb Z_2+u\mathbb Z_2}, u^2=0. Its related parameter of codes over R ={\mathbb Z_2}\mathbb R, with different distance are discussed. The block repetition codes over R are defined and the covering radius for block repetition codes, simplex code and macdonald code of type \alpha and type \beta in R are obtained.

Keywords: Code, finite ring, additive codes, parameter, different distance, block repetition code, simplex code, Macdonald code

  1. T. Abualrub, I. Siap and N. Aydin, \mathbb Z_{2} \mathbb Z_{4}-additive cyclic codes, IEEE Trans. Inform. Theory 60 (3), 1508–1514, 2014.
  2. T. Aoki, P. Gaborit, M. Harada, M. Ozeki and P. Sole, On the covering radius of \mathbb Z_{4}-codes and their lattices, IEEE Trans. Inform. Theory 45 (6), 2162–2168, 1999.
  3. C. Bachoc, Application of coding theory to the construction of modular lattices, J. Combin. Theory Ser. A 78 (1), 92–119, 1997.
  4. M. C. Bhandari, M. K. Gupta and A. K. Lal, On \mathbb Z_{4}-simplex codes and their gray images, In: Lecture Notes in Computer Science, 1719, Applied Algebra, Algebraic Algorithms and Error Correcting Codes, AAECC-13, 170–180, 1999.
  5. M. Bilal, J. Borges, S. T. Dougherty and C. Fernandez-Cordoba, Maximum distance separable codes over \mathbb Z_{4} and \mathbb Z_{2} \mathbb Z_{4}, Des. Codes Cryptogr. 61 (1), 31–40, 2011.
  6. J. Borges, S. T. Dougherty and C. Fernandez-Cordoba, Characterization and constructions of self-dual codes over \mathbb Z_{2} \mathbb Z_{4}, Adv. Math. Commun. 6 (3), 287–303, 2012.
  7. J. Borges, C. Fernandez-Cordoba, J. Pujol, J. Rifa and M. Villanueva, \mathbb Z_{2}\mathbb Z_{4}-linear codes: Generator matrices and duality, Des. Codes Cryptogr. 54 (2), 167–179, 2010.
  8. P. Chella Pandian, On covering radius of codes over R = \mathbb Z_ 2 +u\mathbb Z_ 2, where u2 = 0, using chinese euclidean distance, Discrete Math. Algorithms Appl. 9 (2), 2017; Article ID: 1750017.
  9. P. Chella Pandian, On covering radius of codes over R = \mathbb Z_ 2 +u\mathbb Z_ 2, where u2 = 0, using Bchoc distance, International Journal of Mathematics And its Applications, 5 (4C), 277–282, 2017.
  10. P. Chella Pandian and C. Durairajan, On the covering radius of some codes over R={\mathbb Z_2}+u{\mathbb Z_2}, where u2 = 0, International Journal of Research in Applied, Natural and Social Sciences, Impact Journal 2 (1), 61–70, 2014.
  11. P. Chella Pandian and C. Durairajan, On various parameters of \mathbb Z_q-simplex codes for an even integer q, Algebra Discrete Math. 19 (2), 243–253, 2015.
  12. P. Chella Pandian and C. Durairajan, On \mathbb Z_q-linear and \mathbb Z_q-simplex codes and its related parameters for q is a prime power, J. Discrete Math. Sci. Cryptogr. 18 (1-2), 81–94, 2015.
  13. P. Chella Pandian and J. Mahalakshmi, On \mathbb R-linear codes and its covering radius of some classes of linear codes in \mathbb R, Adv. Math., Sci. J. 9 (3), 1165–1183, 2020.
  14. G. D. Cohen, M. G. Karpovsky, H. F. Mattson and J. R. Schatz, Covering radius-survey and recent results, IEEE Trans. Inform. Theory 31 (3), 328–343, 1985.
  15. C. J. Colbourn and M. K. Gupta, On quaternary MacDonald codes, Proc. Information Technology: Coding and Computing (ITCC) 212–215, 2003.
  16. P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Repts Suppl., Netherlands, 1973.
  17. P. Delsarte and V. Levenshtein, Association schemes and coding theory, IEEE Trans. Inform. Theory 44 (6), 2477–2504, 1998.
  18. S. Dodunekov and J. Simonis, Codes and projective multisets. Electron. J. Comb. 5, 1–23, 1998.
  19. C. Durairajan, On covering codes and covering radius of some optimal codes, Ph.D. Thesis, Department of Mathematics, IIT Kanpur, 1996.
  20. M. K. Gupta, On some linear codes over 2s, Ph.D. Thesis, IIT Kanpur, 1999.
  21. M. K. Gupta and C. Durairajan, On the covering radius of some modular codes, Adv. Math. Commun. 8 (2), 129–137, 2014.
  22. M. K. Gupta, D. G. Glynn and T. A. Gulliver, On senary simplex codes, In: International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes (Ed. by S. Boztaş, I. E. Shparlinski), Lecture Notes in Computer Science, 2227, Springer, Berlin, Heidelberg, 112–121, 2001.