Title: Generalized Metric Spaces
Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814
Article ID: MTJPAM-D-22-00008; Volume 4 / Issue 3 / Year 2022, Pages 194-262
Document Type: Research Paper
Author(s): Stefan Czerwik a
aSilesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland
Received: 22 March 2022, Accepted: 1 April 2022, Published: 28 December 2022.
Corresponding Author: Stefan Czerwik (Email address: steczerw@gmail.com)
Full Text: PDF
Abstract
In the paper we present some generalization of the Paluszyński, Stempak method of producing an “induced” metric by a b-metric, by using Cauchy multiplicative functional equation.
Keywords: Metric space, metrizability, b-metric space, generalized b-metric space, completion of a generalized b-metric space, fixed point
References:- H. Afshari, H. Aydi and E. Karapinar, Existence of fixed points of set-valued mappings in b-metric spaces, East Asian Math. J. 32 (3), 319–332, 2016.
- M. A. Albert and J. A. Baker, Functions with bounded n-th differences, Ann. Polon. Math. 43, 93–103, 1983.
- T. V. An, L. Q. Tuyen and N. V. Dung, Answers to Kirk – Shahzad’s questions on strong b-metric spaces, Taiwanese J. Math. 20 (5), 1175–1184, 2016.
- H. Aimar, B. Iaffei and L. Nitti, On the Macias-Segovia metrization of quasi-metric spaces, Rev. Un. Mat. Argentina 41 (2), 67–75, 1998.
- H. Aydi, M. F. Bota, E. Karapinar and S. Mitrovic A common fixed point for weak phi-contractions on b-metric spaces, Fixed Point Theory 13 (2), 337–346, 2012.
- H. Aydi, M. F. Bota, E. Karapinar and S. Mitrovic A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl. 2012 (88), 2012.
- H. Aydi and S. Czerwik, Fixed point theorems in generalized b-metric spaces, In: Modern Discrete Mathematics and Analysis, with Applications in Cryptography, Information Systems and Modeling (Ed. by N. Daras, Th. Rassias), Springer, Cham, 2018.
- H. Aydi, A. Felhi and S. Sahmim, Common fixed points in rectangular b-metric spaces using (EA) property, J. Adv. Math. Stud. 8(2), 159–169, 2015.
- I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funktionalnyi Analyz, Ulianowskii Gos. Ped. Inst. 30, 26–37, 1989.
- S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fundam. Math. 3, 133–181, 1922.
- V. Berinde and M. Choban, Generalized distances and their associate metrics. Impact on fixed point theory, Creat. Math. Inform. 22 (1), 23–32, 2013.
- S. Cobzas and S. Czerwik, The completion of generalized b-metric spaces and fixed points, Fixed Point Theory, 21 (1), 133–150, 2020.
- R. R. Coifman and M. de Guzman, Sinqular integrals and multipliers on homogeneous spaces, Rev. Un. Mat. Argentina 25, 137–143, 1970.
- H. Covitz and S.B. Nadler, Jr., Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8, 5–11, 1970.
- S. Czerwik, Fixed point theorems and special solutions of functional equations, Silesian Univ., Katowice, Poland, 1980.
- S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1, 5–11, 1993.
- S. Czerwik, Nonlinear set-valued contraction mappings in B-metric spaces, Atti Semin. Mat. Fis. Univ. Modena 46 (2), 263–276, 1998.
- S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, New Jersey, London, Singapore, Hong Kong, 2002.
- S. Czerwik and M. Jóźwik, Local fixed point theorems in generalized b-metric spaces, In: Mathematical Analysis and Applications (Ed. by Th. M. Rassias and P. M. Pardalos) Springer, 2018.
- S. Czerwik, Minkowski’s inequalities for integrals and series in b-metric spaces, Preprint.
- S. Czerwik, Nadler’s fixed point theorem for set-valued mappings in b-metric spaces, Preprint.
- S. Czerwik, On Banach contraction principle in generalized b-metric spaces, Preprint.
- S. Czerwik, What Cauchy not said about series, Preprint.
- S. Czerwik and K. Król, Fixed point theorems for a system of transformations in generalized metric spaces, Asian-Eur. J. Math. 8 (4), 1–8, 2015.
- S. Czerwik and K. Król, Fixed point theorems in generalized metric spaces, Asian-Eur. J. Math. 10 (2), 1–8, 2017.
- S. Czerwik and Th. M. Rassias, Fixed points for a system of mappings in generalized b-metric spaces, In Mathematical Analysis and Applications. Springer Optimization and Its Applications, vol 154. (Ed. by Th. M. Rassias and P. M. Pardalos), Springer Nature Switzerland AG, 41–51, 2019.
- H. M. Dag, The spaces Lp with 0 < p < 1, Bull. Amer. Math. Soc. 46 (10), 816–823, 1940.
- J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74, 305–309, 1968.
- J. Dugundii and A. Granas, Fixed point theory, Polish Scientific Publishers, Warszawa, 1–210, 1982.
- H. Drygas, Quasi-inner products and their applications, in Advances in Multivaria: Statistical Analysis, ed. by A. K. Gupta (Redek Publishing Company, Boston, 13–90, 1987.
- A. H. Frink, Distance functions and the metrization problem, Bull. Amer. Math. Soc. 43, 133–142, 1937.
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27, 222–224, 1941.
- C. F. K. Jung, On generalized complete metric spaces, Bull. Amer. Math. Soc. 75, 113–116, 1969.
- E. Karapinar, S. Czerwik and H. Aydi, (α, ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces, J. Funct. Spaces 2018, 1–4, 2018; Article ID: 3264620.
- W. Kirk and N. Shahzad, Fixed point theory in distance spaces, Cham., Springer, 2014.
- M. A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73 (9), 3123–3129, 2010.
- M. Kuczma, An introduction to the theory of functional equations and inequalities, Polish Scientific Pablishers and Silesian University Press, Warszawa – Kraków – Katowice, 1985.
- L. A. Lusternik and W.L. Sobolew, Elements of functional analysis, PWN, Warszawa, 1959.
- W. A. J. Luxemberg, On the convergence of successive approximations in the theory of ordinary differential equations, Indag. Math. 20 (5), 540–546, 1958.
- R. A. Macias and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. Math. 33, 257–270, 1979.
- R. A. Macias and C. Segovia, Singular integral on generalized Lipschitz and Hardy spaces, Stud. Math. 65, 55–75, 1979.
- J. Matkowski, Integrable solutions of functional equations, Dissertationes Mathematicae 77, Warszawa, 1975.
- J. Matkowski, Some inequalities and a generalization of Banach’s principle, Bull Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 21, 323–324, 1973.
- A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 2, 326–329, 1969.
- S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math. 30, 415–487, 1969.
- S. B. Nadler, Jr., Some results on multi-valued contraction mappings, Lect. Notes Math. 171, 64–69, 1970.
- A. Nuino, M. Almahalebi and A. Charifi, Measure zero stability problem for Drygas functional equation with complex involution, In: Frontiers in Functional Equations and Analytic Inequalities (Ed. by G. A. Anastassiou and J. M. Rassias), Springer Nature Switzerland AG0, 183–193, 2019.
- M. Paluszyński and K. Stempak, On quasi-metric and metric spaces, Proc. Amer. Math. Soc. 137 (12), 4307–4312, 2009.
- O. Popescu, Some new fixed point theorems for α-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl. 2014 (190), 2014.
- J. R. Roshan, N. Shobkolaei, S. Sedghi and M. Abbas, Common fixed point of four maps in b-metric spaces, Hacet. J. Math. Stat. 43 (4), 613–624, 2014.
- Q. Xia, The geodesic problem in quasimetric spaces, J. Geom. Anal. 19 (2), 452–479, 2009.