Article ID: MTJPAM-D-22-00018

Title: A QSPR analysis for physical properties of lower alkanes involving Peripheral Wiener index

Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-22-00018; Volume 4 / Issue 2 / Year 2022, Pages 81-85

Document Type: Research Paper

Author(s): Ruby Merlin Pinto a , Rangaswamy Rajendra b , Polaepalli Siva Kota Reddy c , Ismail Naci Cangul d

aDepartment of Mathematics, Mangalore University, Mangalagangothri, Mangalore-574 199, India

bDepartment of Mathematics, Mangalore University, Mangalagangothri, Mangalore-574 199, India – Department of Mathematics, Field Marshal K.M. Cariappa College (A Constituent College of Mangalore University), Madikeri-571 201, India

cDepartment of Mathematics, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru-570 006, India

dDepartment of Mathematics, Faculty of Arts and Science, Bursa Uludag University, 16059 Bursa, Turkey

Received: 26 April 2022, Accepted: 30 July 2022, Published: 30 September 2022.

Corresponding Author: Polaepalli Siva Kota Reddy (Email address:

Full Text: PDF


Establishing new relationships between the physical properties and the molecular structure of chemical compounds is very exciting. In this short paper, a QSPR analysis is carried for physical properties of lower alkanes involving Peripheral Wiener index, number of paths of length 3 and the number of vertices in molecular graphs and best multiple linear regression models are presented for boiling points, molar volumes, molar refractions, heats of vaporization, critical temperatures, critical pressures and surface tensions of lower alkanes.

Keywords: Topological index, Peripheral Wiener index

  1. I. N. Cangul, A. S. Cevik, V. lokesha and P. S. Ranjini, Sharp bounds for SZ, PI and GA2 indices in terms of the number of triangles, Ilirias J. Math. 4 (1), 41–49, 2015.
  2. F. Harary, Graph theory, Addison Wesley, Reading, Mass, 1972.
  3. S. Hosamani, D. Perigidad, S. Jamagoud, Y. Maled and S. Gavade, QSPR analysis of certain degree based topological indices, J. Stat. Appl. Pro. 6 (2), 361–371, 2017.
  4. H. Hua, On the peripheral Wiener index of graphs, Discrete Appl. Math. 258, 135–142, 2019.
  5. I. Gutman, B. Furtula and M. Petrović, Terminal Wiener index, J. Math. Chem. 46, 522–531, 2009.
  6. V. Lokesha, S. Jain, T. Deepika and A. S. Cevik, Operations on Dutch windmill graph of topological indices, Proc. Jangjeon Math. Soc. 21 (3), 525–534, 2018.
  7. V. Lokesha, M. Manjunath, B. Chaluvaraju, K. M. Devendraiah, I. N. Cangul and A. S. Cevik, Computation of Adriatic indices of certain operators of regular and complete bipartite graphs, Adv. Stud. Contemp. Math. 28 (2), 231–244, 2018.
  8. V. Lokesha, M. Manjunath, T. Deepika, A. S. Cevik and I. N. Cangul, Adriatic indices of some derived graphs of triglyceride, South East Asian J. Math. Math. Sci. 17 (3), 285–298, 2021.
  9. K. P. Narayankar, A. T. Kahsay and S. Klavžar, On peripheral Wiener index: line graphs, Zagreb index, and cut method, MATCH Commun. Math. Comput. Chem. 83 (1), 129–141, 2020.
  10. K. P. Narayankar and S. B. Lokesh, Peripheral Wiener index of a graph, Commun. Comb. Optim. 2 (1), 43–56, 2017.
  11. K. P. Narayankar, S. B. Lokesh, D. Shubhalakshmi and H. S. Ramane, Peripheral path index polynomial, Indian J. Discrete Math. 1 (1), 45–57, 2015.
  12. D. E. Needham, I. C. Wei and P. G. Seybold, Molecular modeling of the physical properties of alkanes, J. Am. Chem. Soc. 110 (13), 4186–4194, 1988.
  13. R. Rajendra, P. S. K. Reddy, S. G. Kini and M. Smitha, Peripheral geodesic index for graphs, Preprint.
  14. P. G. Seybold, M. May and U. A. Bagal, Molecular structure-property relationships, J. Chem. Educ. 64 (7), 575–581, 1987.
  15. P. G. Sheeja, P. S. Ranjini, V. Lokesha and A. S. Cevik, M-polynomials and topological indices of benzene ring embedded in P-type surface in 2D network, Chin. J. Math. Sci. 1 (1), 39–47, 2021.
  16. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1), 17–20, 1947.
  17. K. Xu, K. Ch. Das and N. Trinajstic, The Harary index of a graph, Springer-Verlag, Berlin, Heidelberg, 2015.