Article ID: MTJPAM-D-23-00004

Title: Truncation error upper bounds in derivative Whittaker–type plane sampling reconstruction

Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-23-00004; Volume 6 / Issue 3 / Year 2024, Pages 1-10

Document Type: Research Paper

Author(s): ‪Tibor K. Pogány a

aFaculty of Maritime Studies, University of Rijeka, 51000 Rijeka, Croatia and Institute of Applied Mathematics, Óbuda University, 1034 Budapest, Hungary

Received: 17 March 2023, Accepted: 16 May 2023, Published: 5 June 2023

Corresponding Author: Tibor K. Pogány (Email address:;

Full Text: PDF


A survey is presented on the author’s mean square and almost sure Whittaker–type derivative sampling theorems obtained for the class L^\alpha( \Omega , {\mathfrak F}, {\mathsf P});\; 0 \leq \alpha \le 2 of stochastic processes having spectral representation, with the aid of the Weierstraß \sigma function. Processes of this class are represented by interpolation series. The results are valid for harmonizable and weakly stationary (or in the Hinčin sense stationary) processes (\alpha=2) as well. The formulæ are interpreted in the \alpha–mean and also almost sure sense when the input function and its derivatives are sampled at the points of the integer lattice {\mathbb{Z}}^2 . The circular truncation error is introduced and used in the truncation error analysis and related sampling sum convergence rates are shown.

Keywords: Circular truncation error, derivative sampling, Leont’ev spaces of entire functions, Piranashvili–type stochastic processes, truncation error upper bounds, Weierstraß sigma–function, Whittaker–type sampling, (p, q)–order weighted differential operator

  1. S. Cambanis and E. Masry, On the representation of weakly continuous stochastic processes, Inf. Sci. 3 (4), 277–290, 1971.
  2. I. I. Gikhman and A. V. Skorokhod, Introduction to the theory of stochastic processes, II. Edition, Nauka, Moscow, 1971.
  3. W. K. Hayman, On the local growth of power series: A survey of the Wiman-Valiron method, Canad. Math. Bull. 17 (3), 317–358, 1974.
  4. J. R. Higgins, Sampling theorems and the contour integral method, Appl. Anal. 41, 155–171, 1991.
  5. J. R. Higgins, Sampling theory in Fourier and signal analysis: Foundations, Oxford Science Publications, Clarendon Press, Oxford, 1996.
  6. C. Houdré, On the spectral SLLN and pointwise ergodic theorem in Lα, Ann. Probab. 20, 1731–1753, 1992.
  7. C. Houdré, Reconstruction of band limited processes from irregular samples, Ann. Probab. 23, 674–696, 1995.
  8. A. Hurwitz and R. Courant, Allgemeine Funktionentheorie und elliptische funktionen. Geometrische funktionentheorie, Julius Springer, Berlin, 1922.
  9. A. J. Lee, On band limited stochastic processes, SIAM J. Appl. Math. 30, 269–277, 1976.
  10. A. F. Leont’ev, Generalization of series of exponentials, Nauka, Moscow, 1981. (in Russian)
  11. Z. A. Piranashvili, On the problem of interpolation of random processes, Teor. Veroyatn. Primen. XII (4), 708–717, 1967.
  12. Z. A. Piranashvili and T. K. Pogány, On generalized derivative sampling series expansion, In: Current Trends in Mathematical Analysis and its Interdisciplinary Applications (Ed. by H. Dutta, H. Lj. Kočinac and H. M. Srivastava), Birkhäuser Verlag, Springer Basel AC, 491–519, 2019.
  13. T. K. Pogány, Derivative uniform sampling via Weierstraß σ(z). Truncation error analysis in [2, πq/(2s2)), Georgian Math. J. 8, 129–134, 2001.
  14. T. K. Pogány, Local growth of the Weierstraß σ-function and Whittaker-type derivative sampling, Georgian Math. J. 10, 157–164, 2003.
  15. T. K. Pogány, Derivative Whittaker sampling in Leont’ev spaces, International Workshop on Sampling Theory and Applications – SampTA’03, Extended Abstracts book, Department of Mathematics, University of Vienna and Numerical Harmonic Analysis Group, Vienna, 73–74, 2003.
  16. T. K. Pogány, Whittaker-type derivative sampling reconstruction of stochastic Lα(Ω)-processes, Appl. Math. Comput. 187 (1), 384–394, 2007.
  17. T. K. Pogány, Whittaker–type derivative sampling and (p, q)–order weighted differential operator, In: Sampling, Approximation, and Signal Analysis (Harmonic Analysis in the Spirit of J. Rowland Higgins) (Ed. by S. D. Casey, M. M. Dodson, P. J. S. G. Ferreira and A. Zayed), Birkhäuser, Verlag, Springer Basel AC, 2023.
  18. G. Pólya and G. Szego, Aufgaben und Lehrsätze aus der analysis II: Funktionentheorie. nullstellen. Polynome. Determinanten. Zahlentheorie, Dritte berichtigte Auflage. Die Grundlehren der Mathematischen Wissenschaften, Band 20, Springer-Verlag, Berlin-New York, 1964, (in Russian: Nauka, Moscow, 1978).
  19. M. M. Rao, Harmonizable, Cramér and Karhunen classes of processes, In: Handbook of Statistics (Ed. by E. J. Hannan et al.), Elsevier Science Publishers, 5, 279–310, 1985.
  20. J. M. Whittaker, Interpolatory function theory, Cambridge University Press, Cambridge, 1935.
  21. A. M. Yaglom, Correlation theory of stationary and related random functions, Supplementary Notes and References, Springer Series in Statistics, Springer–Verlag, New York, 1987.