Article ID: MTJPAM-D-23-00005

Title: Survey on Baire-type properties in metrizable c0(Ω, X)


Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-23-00005; Volume 6 / Issue 3 / Year 2024, Pages 11-15

Document Type: Research Paper

Author(s): ‪Salvador López-Alfonso a , Manuel López-Pellicer b , Santiago Moll-López c

aDepartamento de Construcciones Arquitectónicas, Universitat Politècnica de València, 46022 Valencia, Spain

bIUMPA, Universitat Politècnica de València, 46022 Valencia, Spain

cDepartamento de Matemática Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain

Received: 24 March 2023, Accepted: 18 May 2023, Published: 21 June 2023

Corresponding Author: Manuel López-Pellicer (Email address: mlopezpe@mat.upv.es)

Full Text: PDF


Abstract

In [6] it was proved that if \Omega is a non-empty set and X is a normed space, the normed space c_{0}(\Omega ,X) is barrelled, ultrabornological or unordered Baire-like if and only if X is, respectively, barrelled, ultrabornological or unordered Baire-like. If X is a metrizable locally convex space, and \left\{ \left\Vert .\right\Vert _{n}\in \mathbb{N}\right\} is an increasing sequence of semi-norms defining its topology, c_{0}(\Omega ,X) is the metrizable locally convex space over the field \mathbb{K} (of the real or complex numbers) of all functions f:\Omega \rightarrow X such that for each \varepsilon >0 and n\in \mathbb{N} the set \left\{ \omega \in \Omega :\left\Vert f(\omega )\right\Vert _{n}>\varepsilon \right\} is finite or empty, with the topology defined by the semi-norms \left\Vert f\right\Vert _{n}=\sup \left\{ \left\Vert f(\omega )\right\Vert _{n}:\omega \in \Omega \right\} , n\in \mathbb{N}. Also, in [10], it was proved that the metrizable c_{0}(\Omega ,X) is quasi barrelled, barrelled, ultrabornological, bornological, unordered Baire-like, totally barrelled, and barrelled of class p if and only if X is, respectively, quasi barrelled, barrelled, ultrabornological, bornological, unordered Baire-like, totally barrelled, and barrelled of class p. In [14] it was proved that the metrizable c_{0}(\Omega ,X) is baireled if and only if X is baireled. Two open problems are presented.

Keywords: Banach disk, Baire, Baire-like, baireled, metrizable, unordered Baire-like

References:
  1. G. Bennet and N. Kalton, Inclusion theorems for K-spaces, Canad. J. Math. 25 (3), 511–524, 1973.
  2. M. De Wilde, Closed graph theorems and webbed spaces, Research Notes in Mathematics 19; Pitman, Advanced Punordered Baire-likeishing Program, Boston, London, 1978.
  3. J. Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics 92, Springer-Verlag, New York, 1984.
  4. J. C. Ferrando, J. Kakol and M. López-Pellicer, On a problem of Horváth concerning barrelled spaces of vector valued continuous functions vanishing at infinity, Bull. Belg. Math. Soc. Simon Stevin 11 (1), 127–132, 2004.
  5. J. C. Ferrando, M. López Pellicer and L. M. Sánchez Ruiz, Metrizable barrelled spaces, Pitman Research Notes in Mathematics Series 332, Longman, Harlow, 1995.
  6. J. C. Ferrando and S. V. Lüdkovsky, Some barrelledness properties of c0(Ω, X), J. Math. Anal. Appl. 274, 577–585, 2002.
  7. J. C. Ferrando and L. M. Sánchez Ruiz, A maximal class of spaces with strong barrelledness conditions, Proc. Roy. Irish Acad. Sect. A 92, 69–75, 1992.
  8. J. C. Ferrando and L. M. Sánchez Ruiz, A survey on recent advances on the Nikodým boundedness theorem and spaces of simple functions, Rocky Mountain J. Math. 34 (1), 139–172, 2004.
  9. J. Kakol, W. Kubiś and M. López-Pellicer, Descriptive topology in selected topics of functional analysis, Developments in Mathematics, 24, Springer, New York, 2011.
  10. J. Kakol, M. López Pellicer and S. Moll-López, Banach disks and barrelledness properties of metrizable c0(Ω, X), Mediterr. J. Math. 1, 81–91, 2004.
  11. G. Köthe, Topological vector spaces I, Grundlehren der Mathematischen Wissenschaften 159, Springer-Verlag, New York Inc., New York, 1979.
  12. G. Köthe, Topological vector spaces II, Grundlehren der Mathematischen Wissenschaften 237, Springer-Verlag, New York-Berlin, 1979.
  13. S. López-Alfonso, M. López-Pellicer and S. Moll-López, On four classical measure theorems, Mathematics 9 (5), 2021; Article ID: 526
  14. S. López-Alfonso, M. López-Pellicer and S. Moll-López, Baire-type properties in metrizable c0(Ω, X), Axioms 11 (1), 2022; Article ID: 6.
  15. S. López-Alfonso, J. Mas and S. Moll-López, Nikodym boundedness property for webs in σ-algebras, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 110, 711–722, 2016.
  16. M. López-Pellicer, Webs and bounded additive measures, J. Math. Anal. Appl. 210, 257–267, 1997.
  17. A. Marquina and J. M. Sanz-Serna, Barrelledness conditions on c0(E), Arch. Math. (Basel) 31, 589–596, 1978.
  18. J. Mendoza, A barrelledness criterion for C0(E), Arch. Math. (Basel) 40, 156–158, 1983.
  19. J. Mendoza, Necessary and sufficient conditions for C(X; E) to be barrelled or infrabarrelled, Simon Stevin 57, 103–123, 1983.
  20. P. Pérez Carreras and J. Bonet, Barrelled locally convex spaces, North-Holland Mathematics Studies 131, North-Holland Punordered Baire-likeishing Co., Amsterdam, 1987.
  21. A. Pietsch, Nuclear locally convex spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 66, Springer-Verlag, New York-Heidelberg, 1972.
  22. W. J. Robertson, I. Tweddle and F. E. Yeomans, On the stability of barrelled topologies III, Bull. Aust. Math. Soc. 22, 99–112, 1980.
  23. S. A. Saxon, Nuclear and product spaces, Baire-like spaces and the strongest locally convex topology, Math. Ann. 197, 87–106, 1972.
  24. S. A. Saxon, Some normed barrelled spaces which are not Baire, Math. Ann. 209, 153–170, 1974.
  25. S. A. Saxon, and P. P. Narayanaswani, Metrizable (LF)-spaces, (db) -spaces and the separable quotient problem, Bull. Aust. Math. Soc. 23, 65–80, 1981.
  26. W. Schachermayer, On some classical measure-theoretic theorems for non σ-complete Boolean algebras, Dissertationes Math. 214, 1–36, 1982.
  27. A. R. Todd and S. A. Saxon, A property of locally convex Baire spaces, Math. Ann. 206, 23–34, 1973.
  28. M. Valdivia, Sobre el teorema de la gráfica cerrada, Collect. Math. 22, 51–72, 1971.
  29. M. Valdivia, On certain barrelled normed spaces, Ann. Inst. Fourier (Grenoble) 29, 39–56, 1979.
  30. M. Valdivia, On suprabarrelled spaces, In, Functional analysis, holomorphy, and approximation theory, Proc. Sem., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1978, pp. 572–580, Lecture Notes in Mathematics 843, Springer, Berlin, 1981.
  31. M. Valdivia, Topics in locally convex spaces, North-Holland Mathematics Studies 67, North-Holland Punordered Baire-likeishing Co., Amsterdam, New York, 1982.
  32. M. Valdivia and P. Pérez Carreras, On totally barrelled spaces, Math. Z. 178, 263–269, 1981.