Title: Hardy-type inequalities generalized via Montgomery identity
Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814
Article ID: MTJPAM-D-23-00022; Volume 6 / Issue 3 / Year 2024, Pages 62-71
Document Type: Research Paper
Author(s): Kristina Krulić Himmelreich a , Josip Pečarić
b , Dora Pokaz
c , Marjan Praljak
d
aUniversity of Zagreb Faculty of Textile Technology, Prilaz Baruna Filipovića 28a, 10000 Zagreb, Croatia
bCroatian Academy of Sciences and Arts, Trg Nikole Šubića Zrinskog 11, 10000 Zagreb, Croatia
cUniversity of Zagreb Faculty of Civil Engineering, Fra Andrije Kačića Miošića 26, 10000 Zagreb, Croatia
dUniversity of Zagreb Faculty of Food Technology and Biotechnology, Pierrottijeva 6, 10000 Zagreb, Croatia
Received: 4 September 2023, Accepted: 23 September 2023, Published: 7 November 2023
Corresponding Author: Dora Pokaz (Email address: dora.pokaz@grad.unizg.hr)
Full Text: PDF
Abstract
In this paper, we give generalization of Hardy’s type inequalities by using the Green function and the Montgomery identity. We lean on the idea of the generalization of the Hardy inequality that includes measure spaces with positive σ-finite measures. We provide the result concerning the n-convexity property of the function and establish the connection between new and known result. In order to get upper bounds for the identities related to generalizations of the Hardy’s inequality, we obtain Grüss and Ostrowski-type inequalities.
Keywords: Inequalities, Hardy type inequalities, Green function, Chebyshev functional, Montgomery identity, convex function, kernel
References:- M. Adil Khan, J. Khan and J. Pečarić, Generalizations of Sherman’s inequality by Montgromey Identity and Green function, Mong. Math. J. 19, 46–63, 2017.
- R. P. Agarwal, S. Ivelić Bradanović and J. Pečarić, Generalizations of Sherman’s inequality by Lidstone’s interpolationg polynomial, J. Inequal. Appl. 2016, 2016; Article ID: 6.
- A. Aglić Aljinović, J. Pečarić and A. Vukelić, On some Ostrowski type inequalities via Montgomery identity and Taylor’s formula II, Tamkang J. Math. 36 (4), 279–301, 2005.
- Y. Bicheng, L. Debnath and Z. Zhuohua, On new generalizations of Hardy’s integral inequality, J. Math. Anal. Appl. 217 (1), 321–327, 1998.
- C. de Boor, Divided differences, Surv. Approx. Theory 1, 46–69, 2005.
- P. Cerone and S. S. Dragomir, Some new Ostrowski-type bounds for the Cebysev functional and applications, J. Math. Inequal. 8 (1), 159–170, 2014.
- E. K. Godunova, Inequalities based on convex functions, Izv. Vysh. Uchebn. Zaved. Matematika 47 (4), 45–53, 1965; English transl. in Amer. Math. Soc., Transl., II Ser 88, 57–66, 1970.
- G. H. Hardy, Notes on some points in the integral calculus LX: An inequality between integrals (60), Messenger of Math. 54, 150–156, 1925.
- S. Kaijser, L. Nikolova, L. E. Persson and A. Wedestig, Hardy-Type Inequalities via convexity, Math. Inequal. Appl. 8, 403–417, 2005.
- S. Kaijser, L.-E. Persson and A. Öberg, On Carleman and Knopp’s inequalities, J. Approx. Theory 117, 140–151, 2002.
- K. Krulić Himmelreich, Generalizations of Hardy type inequalities by Taylor’s formula, Math. Slovaca 72 (1), 67–84, 2022.
- K. Krulić Himmelreich, Some new inequalities involving the generalized Hardy operator, Math. Pannon. (N. S.) 28 (2), 127–132, 2022.
- K. Krulić and J. Pečarić, Some new Hardy–type inequalities with general kernels II, Math. Inequal. Appl. 19 (1), 73–84, 2016.
- K. Krulić, J. Pečarić and L.-E. Persson, Some new Hardy–type inequalities with general kernels, Math. Inequal. Appl. 12 (3), 473–485, 2009.
- K. Krulić Himmelreich, J. Pečarić and D. Pokaz, Inequalities of Hardy and Jensen, Element, Zagreb, 2013.
- K. Krulić Himmelreich, J. Pečarić, D. Pokaz and M. Praljak, Generalizations of Hardy type inequalities by Abel–Gontscharoff’s interpolating polynomial, Mathematics 9 (15), 2021; Article ID: 1724, https://doi.org/10.3390/math9151724.
- J. Kuang, Some norm inequalities for fractional integral operators, Montes Taurus J. Pure Appl. Math. 4 (3), 93–102, 2022.
- A. Kufner, L. Maligranda and L.-E. Persson, The prehistory of the Hardy inequality, Amer. Math. Monthly 113 (8), 715–732, 2006.
- A. Kufner, L. Maligranda and L.-E. Persson, The Hardy inequality. About its history and some related results, Vydavatelsky Servis Publishing House, Pilsen, 2007.
- J. E. Pečarić, F. Proschan and Y. L. Tong, Convex functions, partial orderings and statistical applications, Academic Press, San Diego, 1992.
- D. Pokaz, Generalized Hardy-type inequality via Lidstone interpolating polynomial and new Green functions, Accepted in Rad Hrvat. Akad. Znan. Umjet. Mat. Znan.
- T. Popoviciu, Sur I’approximation des functions convexe d’order superier, Mathematica (Cluj) 10, 49–54, 1935.