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A SIMPLE PROOF OF A BINOMIAL IDENTITY WITH

APPLICATIONS
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Abstract. Peterson [Amer. Math. Monthly, 120 (2013), 558–562] gave
a probabilistic proof of a binomial identity. In this paper, by using the
partial fraction decomposition, we give a simple proof of this binomial
identity. As some applications, we obtain some interesting harmonic
number identities.
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1. Introduction

For n, r ∈ N = {1, 2, · · · } and z ∈ C.
The classical harmonic numbers Hn and higher order harmonic numbers

H
(r)
n are defined respectively (see [3]),

H0 = 1, Hn =
n∑

k=1

1

k

and

H
(r)
0 = 1, H(r)

n =
n∑

k=1

1

kr
.

Clearly,

Hn = H(1)
n .

J. Choi, H. M. Srivastava, T. M. Rassias have studied some summation
formulas and classes of infinite series and generalized harmonic numbers.
They defined the generalized higher order harmonic numbers as follows (see
[1], [2] and [6])

H(r)
n (z) =

n∑
k=1,k 6=−z

1

(k + z)r
.(1.1)
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H
(r)
0 (z) :=

 0, when z 6= 0,

1, when z = 0.

Obviously,

H(r)
n (0) = H(r)

n .

The standard Bell polynomials are displayed in Comtet’s book (see [3,p.133–
134]). We below give a variant of the Bell polynomials, i.e., the modifield
Bell polynomials Ln(x1, x2, · · · ) which are defined by

(1.2) exp

( ∞∑
k=1

xk
zk

k

)
= 1 +

∞∑
n=1

Ln(x1, x2, · · · )zn.

The expansion above starts as

1 + x1z +

(
x2
2

+
x21
2

)
z2 +

(
x3
3

+
x1x2

2
+
x31
6

)
z3

+

(
x4
4

+
x1x3

3
+
x22
8

+
x2x

2
1

4
+
x41
24

)
z4 + · · · ,

which fixes the first few values, the general formula being

(1.3)

Ln(x1, x2, · · · ) =
∑

m1+2m2+3m3+···=n

1

m1!m2!m3! · · ·

(x1
1

)m1
(x2

2

)m2
(x3

3

)m3

· · · .

The following binomial identity is the well-known: for x > 0 and n ∈ N,

(1.4)

n∑
k=0

(−1)k
(n
k

) x

x+ k
=

n∏
k=1

k

x+ k
.

Recently, by the probabilistic method, Peterson [5] proved the following
binomial, for r, n ∈ N; x > 0,
(1.5)

n∑
k=0

(−1)k
(n
k

)( x

x+ k

)r

=

(
n∏

k=1

k

x+ k

)1 +
r−1∑
j=1

∑
1≤k1≤···≤kj≤n

xj

(x+ k1)(x+ k2) · · · (x+ kj)

 .

The goal of this note is to give a very simple and elementary proof of
the binomial identity above using the partial fraction decomposition. As
some applications, we obtain some interesting binomial identity involving
the harmonic numbers.
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2. Theorem and proof

First we need the following lemma.

Lemma 2.1. For n, r ∈ N0, x > 0, we have

n!

z(z − 1) · · · (z − n)

(
x

z + x

)r

=
n∑

k=0

(−1)n−k
(n
k

)( x

x+ k

)r 1

z − k
+

λ

(x+ z)r
+ · · ·+ µ

x+ z
.(2.1)

Proof. By means of the standard partial fraction decomposition, we have

f(z) =
n!

z(z − 1) · · · (z − n)

(
x

z + x

)r

=
n∑

k=0

Ak

z − k
+

λ

(x+ z)r
+ · · ·+ µ

x+ z
,

where the coefficients Ak remain to be determined.

Ak = lim
z→k

(z − k)f(z)

= lim
z→k

(z − k)
n!

z(z − 1) · · · (z − n)

(
x

z + x

)r

= lim
z→k

n!

z · · · (z − k + 1)(z − k − 1) · · · (z − n)

(
x

z + x

)r

=(−1)n−k
(n
k

)( x

x+ k

)r

.

This completes the proof. �

Theorem 2.2. For n, r ∈ N0, x > 0, we have

(2.2)

n∑
k=0

(−1)k
(n
k

)( x

x+ k

)r

=(
n∏

k=1

k

x+ k

) ∑
m1+2m2+3m3+···=r−1

xr−1

m1!m2!m3! · · ·

×

(
H

(1)
n+1(x− 1)

1

)m1 (
H

(2)
n+1(x− 1)

2

)m2 (
H

(3)
n+1(x− 1)

3

)m3

· · · ,

where H
(r)
n (z) is the generalized higher order harmonic numbers.

Proof. Multiplying the both sides of (2.1) by z, and then let z → ∞, we
obtain

(2.3)
n∑

k=0

(−1)n−k
(n
k

)( x

x+ k

)r

+ µ = 0.
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By (1.2), (1.3) and (2.1), we have

µ =[(x+ z)−1]
n!

z(z − 1) · · · (z − n)

(
x

z + x

)r

=n![(x+ z)r−1]
xr

z(z − 1) · · · (z − n)

=(−1)n+1n!

(
n∏

k=1

1

x+ k

)
xr−1[zr−1]

1(
1− z

x

) (
1− z

x+1

)
· · ·
(

1− z
x+n

)
=(−1)n+1n!

(
n∏

k=1

1

x+ k

)
xr−1[zr−1] exp

(
− log

(
1− z

x

)
−

log

(
1− z

x+ 1

)
− · · · − log

(
1− z

x+ n

))

=(−1)n+1n!

(
n∏

k=1

1

x+ k

)
xr−1[zr−1]×

exp

{∑
k≥1

[(
1

xk
+

1

(x+ 1)k
+ · · ·+ 1

(x+ n)k

)]
zk

k

}

=(−1)n+1

(
n∏

k=1

k

x+ k

)
xr−1[zr−1] exp

∑
k≥1

H
(k)
n+1(x− 1)

zk

k


=(−1)n+1

(
n∏

k=1

k

x+ k

)
xr−1

∑
m1+2m2+3m3+···=r−1

1

m1!m2!m3! · · ·

×

(
H

(1)
n+1(x− 1)

1

)m1 (
H

(2)
n+1(x− 1)

2

)m2 (
H

(3)
n+1(x− 1)

3

)m3

· · · .

This proof is complete. �

3. Applications

Below we obtain some interesting binomial identities including the har-
monic numbers by applying the formulas (2.2).
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Theorem 3.1. For n, r,M ∈ N, x ≥ −1, we have
(3.1)

n∑
k=0

(−1)k
(n
k

)(
H

(r)
M+k(x+ 1)−H(r)

k (x+ 1)
)

=

M∑
j=1

(
n∏

k=0

1

k + j + x+ 1

) ∑
m1+2m2+3m3+···=r−1

n!

m1!m2!m3! · · ·

×
(
Hn+1(x+ j)

1

)m1
(
H

(2)
n+1(x+ j)

2

)m2 (
H

(3)
n+1(x+ j)

3

)m3

· · · .

Proof. Letting x 7−→ x+ 1 in (2.2). We have

(3.2)
n∑

k=0

(−1)k
(n
k

) 1

(x+ k + 1)r
=

n∏
k=0

1

x+ k + 1

∑
m1+2m2+3m3+···=r−1

n!

m1!m2!m3! · · ·

×
(
Hn+1(x)

1

)m1
(
H

(2)
n+1(x)

2

)m2 (
H

(3)
n+1(x)

3

)m3

· · · .

Applying (3.2) (x 7−→ x+ j), we get

n∑
k=0

(−1)k
(n
k

)(
H

(r)
M+k(x+ 1)−H(r)

k (x+ 1)
)

=
n∑

k=0

(−1)k
(n
k

) M∑
j=1

1

(x+ k + j + 1)r

=

M∑
j=1

n∑
k=0

(−1)k
(n
k

) 1

(x+ k + j + 1)r

=
M∑
j=1

(
n∏

k=0

1

x+ k + j + 1

) ∑
m1+2m2+3m3+···=r−1

n!

m1!m2!m3! · · ·

×
(
Hn+1(x+ j)

1

)m1
(
H

(2)
n+1(x+ j)

2

)m2 (
H

(3)
n+1(x+ j)

3

)m3

· · · .

This proof is complete. �

Setting x = −1 in (3.1), we easily arrive at
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Corollary 3.2. For n, r,M ∈ N, we have

(3.3)
n∑

k=0

(−1)k
(n
k

)(
H

(r)
M+k −H

(r)
k

)

=

M∑
j=1

(
n∏

k=0

1

k + j

) ∑
m1+2m2+3m3+···=r−1

n!

m1!m2!m3! · · ·

×
(
Hn+1(j − 1)

1

)m1
(
H

(2)
n+1(j − 1)

2

)m2 (
H

(3)
n+1(j − 1)

3

)m3

· · · .

Next we give some special cases of the binomial identity above.
Case 1. Taking r = 1 in (3.3), we get the following binomial identities

including the harmonic numbers

n∑
k=0

(−1)k
(
n

k

)
(HM+k −Hk) =

M∑
j=1

1

j
(
n+j
j

) .(3.4)

Let M →∞ in (3.4). Applying the formula [4,p.19, (2.11)]

∞∑
k=1

1

k
(
n+k
k

) =
1

n
,

we obtain the following familiar formula

n∑
k=0

(−1)k−1
(
n

k

)
Hk =

1

n
.

Taking M = 1 in (3.4), we have

n∑
k=0

(−1)k
(
n

k

)
1

k + 1
=

1

n+ 1
.

Taking M = n in (3.4), we have

n∑
k=0

(−1)k
(
n

k

)
(Hn+k −Hk) =

n∑
j=1

1

j
(
n+j
j

) .
Case 2. Taking r = 2 in (3.3), we obtain the following binomial identities

including the harmonic numbers of order 2

n∑
k=0

(−1)k
(n
k

)(
H

(2)
M+k −H

(2)
k

)
=

M∑
j=1

Hn+1(j − 1)

j
(
n+j
j

) .(3.5)

Taking M = 1 in (3.5), we deduce that

n∑
k=0

(−1)k
(n
k

) 1

(k + 1)2
=
Hn+1

n+ 1
.
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Taking M = n in (3.5), we get the following identity of harmonic number.

n∑
k=0

(−1)k
(n
k

)(
H

(2)
n+k −H

(2)
k

)
=

n∑
j=1

Hn+1(j − 1)

j
(
n+j
j

) .

Case 3. Taking r = 3 in (3.3), we get the following binomial identities
including the harmonic numbers of order 3

n∑
k=0

(−1)k
(n
k

)(
H

(3)
M+k −H

(3)
k

)
=

M∑
j=1

H2
n+1(j − 1) +H

(2)
n+1(j − 1)

2j
(
n+j
j

) .(3.6)

Taking M = 1 in (3.6), we get

n∑
k=0

(−1)k
(n
k

) 1

(k + 1)3
=
H2

n+1 +H
(2)
n+1

2(n+ 1)
.

Taking M = n in (3.6), we have the following identity of harmonic number.

n∑
k=0

(−1)k
(n
k

)(
H

(3)
n+k −H

(3)
k

)
=

n∑
j=1

H2
n+1(j − 1) +H

(2)
n+1(j − 1)

2j
(
n+j
j

) .

Case 4. Taking M = 1 in (3.3), we deduce that

n∑
k=0

(−1)k
(n
k

) 1

(k + 1)r
=

1

n+ 1

∑
m1+2m2+3m3+···=r−1

1

m1!m2!m3! · · ·

(
Hn+1

1

)m1
(
H

(2)
n+1

2

)m2 (
H

(3)
n+1

3

)m3

· · · .
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