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Abstract
A recently introduced graph invariant Ω(G) for a graph G is proven to have several nice applications in Graph Theory and Com-
binatorics. This number gives direct information on the number of components, realizability, cyclicness, connectedness, chords,
loops, pendant edges, faces, bridges and the number of realizations. In this paper, we determine Ω values of the line graphs of
unicyclic graphs.
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1. Introduction

Let G = (V, E) be a graph of order n and size m. We denote the degree of a vertex v ∈ V(G) by dv. A vertex of
degree one will be called a pendant vertex. If u and v are two adjacent vertices of G, then the edge e connecting these
vertices will be denoted by e = uv. e will be said to be incident with the vertices u and v. The largest vertex degree
in a graph will be denoted by ∆. A vertex which is adjacent to a pendant vertex is called a support vertex. A graph is
said to be connected if there is a path between every pair of vertices and disconnected if not. For the definitions of the
fundamental notions in Graph Theory, see [1], [3], [4].

In many occasions, we shall classify our graphs under consideration according to whether they have at least one
cycle or not. Those graphs having no cycle will be called acyclic. For example, all trees are acyclic. The remaining
graphs are called cyclic graphs. A graph having one, two, three cycles is called unicyclic, bicyclic and tricyclic, re-
spectively.

Written with multiplicities, a degree sequence in general is

D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)}

where some of ai’s could be zero. Let D = {d1, d2, d3, · · · ,∆} be a set of non-decreasing non-negative integers. If the
degree sequence of a graph G is equal to D, then it is said that G is a realization of D and D is said to be realizable.
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2. Ω invariant

We recall the definition and some fundamental properties of the number Ω(G) which was defined and studied
in [2] for a given graph G or for a realizable degree sequence D having a realization G. The invariant Ω(D) was
defined in [2] as a generalization of this equation as follows:

Definition 2.1. Let D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)} be the degree sequence of a graph G. The Ω(G) of the graph G is
defined only in terms of the degree sequence as

Ω(G) = a3 + 2a4 + 3a5 + · · · + (∆ − 2)a∆ − a1

=

∆∑
i=1

(i − 2)ai.

Ω(G) of several main graph classes such as T , Pn, Cn, S n, Kn, Tr,s and Kr,s, where n = r + s which respec-
tively denote a tree, path, cycle, star, complete, tadpole and complete bipartite graphs with n vertices are Ω(Cn) = 0,
Ω(Pn) = −2, Ω(S n) = −2, Ω(T ) = −2, Ω(Kn) = n(n − 3), Ω(Kr,s) = 2[rs − (r + s)] and Ω(Tr,s) = 0. Amongst these
graph classes, the most useful ones in the study of Ω are the path, cycle and tree graphs. Note that the Ω of a path, star
or tree is equal to −2, and again note that these are acyclic graphs. This is in fact true for all connected acyclic graphs
as given in [2].

We now recall some fundamental properties of Ω.

Theorem 2.2. [2] For any graph G,
Ω(G) = 2(m − n).

That is, for any graph G, Ω(G) is even. Therefore if Ω(D) is odd for a set D of non-negative integers, then D is not
realizable.

The number r of independent (non-overlapping) cycles in a graph G which is also known as the cyclomatic number
of G can be given in terms of Ω(G):

Corollary 2.3. [2] Let D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)} be realizable as a graph G with c components. The number r
of faces of G is given by

r =
Ω(G)

2
+ c.

3. Line graph

Given a simple undirected graph G, a graph obtained by associating a new vertex onto each edge of G and con-
necting two such new vertices with an edge iff the corresponding edges of the graph G have a vertex in common is
called the line graph of G and will be denoted by L(G). It is known that the order of the line graph is equal to the size
of the graph, and the number of edges of the line graph is given by the formula

m(L(G)) =
1
2

∑
u∈V(G)

d2
u − m(G).

Here noticing that the sum here is equal to the first Zagreb index M1(G), this equation can be restated as

m(L(G)) =
1
2

M1(G) − m(G).

It can be easily calculated that L(Pn) = Pn−1, L(Cn) = Cn and L(S n) = Kn−1.

In this paper, we shall study the unicyclic graphs. Therefore we recall the following result which characterizes the
connected unicyclic graphs:
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Lemma 3.1. [5] Let G be a connected graph. G is unicyclic iff m(G) = n(G).

That is, the order and size of every connected unicyclic graph are equal and vice versa. i.e. the number of vertices
must be equal to the number of edges. As n(L(G)) = m(G), Lemma 3.1 immediately reduces the following result
which characterises all the graphs G such that the orders of G and L(G) are equal:

Theorem 3.2. [5] Let G be a connected graph. G is unicyclic iff n(L(G)) = n(G).

By Theorem 3.2, G and L(G) have the same number of vertices whenever the graph G is unicyclic. Of course,
the line graph, having many faces, is rarely unicyclic. Here, we start with a characterization of all graphs having the
property that n(L(G)) = n(G). Normally even if the graph is unicyclic or acyclic, its line graph may have a large
number of faces. In [5], the following result was given about the structure of the line graph of a tree:

Theorem 3.3. Let G be a connected simple acyclic graph with degree sequence D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)}. Then
its line graph L(G) consists of a2 times K2’s, a3 times K3’s, · · · , a∆ times K∆’s where Kr and Ks have a unique common
vertex in L(G) for dvi = r and dv j = s iff vi and v j are adjacent in G.

Finally, we must recall the following result relating the size of L(G) and the size of G:

Theorem 3.4. [5] For any graph G,

m(L(G)) + m(G) =
M1(G)

2
(3.1)

where M1(G) denotes the first Zagreb index of G.

Example 3.5. Let G be the tree in Fig. 1 with m(G) = 7 and n(G) = 8.

Figure 1 A tree and its line graph

Note that the degree sequence of G is {1(5), 3(3)} and hence the first Zagreb index of G is M1(G) = 5 · 12 + 3 · 32 = 32.
As m(G) = 7 and m(L(G)) = 9, the equality in Eqn. (1) holds.

4. Line graphs of unicyclic graphs

Recall that for any connected unicyclic graph G, the omega of G must be Ω(G) = 0. Now we calculate the number
of faces and following this, the omega invariant of the line graphs of the unicyclic graphs. First we characterize
unicyclic regular graphs by means of omega invariant:

Theorem 4.1. A connected k-regular graph is unicyclic iff k = 2.

Proof. (⇒) Let G be a k-regular unicyclic graph. Note that the degree sequence of G would be {kn} where n is the
number of vertices and also r = 1. The omega of G is Ω(G) = (k − 2)n. As G is connected, by Corollary 2.3,
r = Ω

2 + 1 =
(k−2)n

2 + 1 = 1. Therefore k must be 2.
(⇐) Let G be a k = 2-regular graph. Then the degree sequence of G would be {2n}. Hence Ω(G) = (2 − 2)n = 0
implying that r = 0

2 + 1 = 1. Therefore G must be unicyclic.

This means that if a unicyclic graph is k-regular, k must be 2. Similarly, if a graph is k-regular and if k ≥ 3, then it
cannot be unicyclic. For example, no 3-regular graph can be unicyclic.
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Theorem 4.2. Let G be a unicyclic graph. Then the omega value of the line graph L(G) of G is

Ω(L(G)) = 2
∆∑

i=3

aiTi−2

where Ti is the i-th triangular number given by Ti =
i(i + 1)

2
.

Proof. Let G be a unicyclic graph. By Theorem 3.3, L(G) consists of complete graphs Kr around each vertex vi of
degree r ≥ 2 while there is also a cycle connecting the new vertices on the edges of the unique cycle of G. Kn has
n(n − 3)

2
+ 1 regions surrounded by the edges of Kn. As each edge of L(G) belongs to exactly one of those complete

graphs, we get

r(L(G)) =
∑∆

i=3 ai

(
i(i − 3)

2
+ 1

)
+ 1

=
∑∆

i=3 ai

(
(i − 1)(i − 2)

2

)
+ 1

=
∑∆

i=3 aiTi−2 + 1.

By Corollary 2.3, the result can be deduced.

Note that we can easily say that the omega invariants of the line graphs of two important classes of unicyclic
graphs, namely cycle and tadpole graphs, are 0 and 2 according to Theorem 4.2.
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