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Abstract
The main purpose of this paper is to not only define Apostol type new classes of numbers and polynomials, but also construct
generating function for two new classes of special combinatorial numbers and polynomials by applications of p-adic integrals
including the Volkenborn integral and the fermionic integral. By using these generating functions, we introduce not only funda-
mental properties of these combinatorial numbers and polynomials, but also new identities and formulas. In general, identities
and formulas obtained in this paper include the newly introduced combinatorial numbers and polynomials, Bernoulli numbers and
polynomials, Euler numbers and polynomials, Apostol-Bernoulli numbers and polynomials, Apostol-Euler numbers and polyno-
mials, Stirling numbers of the second kind, Daehee numbers, Changhee numbers, the generalized Eulerian type numbers, Eulerian
polynomials, Fubini numbers, Dobinski numbers. Moreover, by applying derivative operator to the generating functions for two
new classes of special combinatorial numbers, we construct interpolation functions for these numbers. We also introduce another
zeta-type function which interpolates a special case of one of the newly introduced combinatorial numbers at negative integers.
Very interesting results are obtained from these interpolation functions, especially a new combinatorial numbers derived. So,
4 open problems are raised involving these new numbers. Finally, we give conclusions for the results of this paper with some
comments and observations.
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1. Introduction

Special numbers and polynomials have been among the most used and studied subjects of mathematics both in
science and social sciences in recent years. In particular, it is easy to observe that the generating functions of these
special numbers and polynomials are equally frequently used in the related topics. With the help of these functions,
most of the fundamental properties of special numbers and polynomials, especially their derivative formulas, recurrent
relations, can be given, including the Raabe type multiplication formula. As a result, in this study, special combina-
torial numbers and polynomials consisting of two new classes and the construction of their generating functions are
prepared based on the first main motivation. Not only with the aid of the Volkenborn integral and the fermionic in-
tegral, but also with the help of generating functions with their functional equations, when these two new classes of
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special numbers and polynomials are examined with detailed criticism and some special values of them are exam-
ined, it has been shown that they are related to the following very important and well-known special numbers and
polynomials: combinatorial numbers and polynomials, Bernoulli numbers and polynomials, Euler numbers and poly-
nomials, Apostol-Bernoulli numbers and polynomials, Apostol-Euler numbers and polynomials, Stirling numbers of
the second kind, Daehee numbers, Changhee numbers, Eulerian polynomials, Fubini numbers, Dobinski numbers,
and others.

It is well known that the study of the behavior of generating functions under integral transforms and derivative
operators relies on very old work. Among these behaviors, the areas where many zeta-type functions and Dirichlet-
type series are constructed are one of the most popular areas of analytic number theory. Because it is known that these
zeta type functions and Dirichlet type series are used as many kinds of problems involving models for solving real
world problems not only in mathematics but also in physics and engineering (cf. [1]–[81]).

The second motivation of this study is to construct interpolation functions of two new families of newly defined
combinatorial numbers with the help of the derivative operator of interpolation functions. In addition, some basic
properties of interpolation functions are examined.

Of course, some basic standard notations, formulas and definitions, which we will give in the next step, are needed
to achieve the above mentioned results.

Let N, Z and C denote the set of natural numbers, the set of integer numbers and the set of complex numbers,
respectively, and also N0 = N ∪ {0}. We also tacitly suppose that for z ∈ C, log z denotes the principal branch of the
many-valued function Im(log z) with the imaginary part log z constrained by

−π < Im(log z) ≤ π.

Here log e = 1 will be considered throughout this paper.
Therefore, for all constraints and properties on the Apostol-Bernoulli numbers and polynomials, and Apostol-

Euler numbers and polynomials which are given below, exponential functions, and complex valued functions, it is
recommended to first look at the reference [76]-[78], and also see the other the reference list of this paper.

0n =

{
1, n = 0
0, n ∈ N

with (
α

n

)
=

(α)n

n!
,

where
(α)n = α (α − 1) (α − 2) ... (α − n + 1)

with (α)0 = 1 and n ∈ N0.
The Apostol-Bernoulli polynomials, Bn (x; λ), are defined by the following generating function:

t
λet − 1

ext =

∞∑
n=0

Bn (x; λ)
tn

n!
, (1.1)

where λ is an arbitrary (real or complex) parameter and |t| < 2π when λ = 1 and |t| <
∣∣∣log λ

∣∣∣ when λ , 1 (cf. [3], [43],
[74], [78]). Moreover, setting x = 0 in (1.1), we have the Apostol-Bernoulli numbers:

Bn (0; λ) = Bn (λ)

(cf. [3], [43], [74], [78]).
When λ = 1 in (1.1), we have

Bn (1) = Bn

where Bn denotes the Bernoulli numbers (cf. [1]-[78]; and references therein).
The Apostol-Euler polynomials, En (x; λ), are defined by the following generating function:

2
λet + 1

ext =

∞∑
n=0

En (x; λ)
tn

n!
, (1.2)
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where λ is an arbitrary (real or complex) parameter and |t| < π when λ = 1 and |t| <
∣∣∣log (−λ)

∣∣∣ when λ , 1 (cf. [43],
[74], [78]). Moreover, setting x = 0 in (1.2), we have the Apostol-Euler numbers:

En (0; λ) = En (λ)

(cf. [43], [74], [78]).
When λ = 1 in (1.2), we have

En (1) = En

where En denotes the Euler numbers (cf. [1]-[78]; and references therein).
We also need the following well-known relation between the Apostol-Euler numbers, En (λ) and the Apostol-

Bernoulli numbers, Bn (λ):

En (λ) = −
2

n + 1
Bn+1(−λ) (1.3)

(cf. [71, Eq. (1.28)], [78]).
Let a, b, c ∈ R+ (a , b) , x ∈ R, λ ∈ C and u ∈ C\{λ} . The generalized Eulerian type polynomials,Hn (x; u; a, b, c; λ),

are defined by the following generating function:

Fλ (t, x; u, a, b, c; λ) =

(
at − u

)
cxt

λbt − u
=

∞∑
n=0

Hn (x; u; a, b, c; λ)
tn

n!
, (1.4)

where |t| < 2π
|log b|

when λ = u;
∣∣∣∣t log b + log

(
λ
u

)∣∣∣∣ < 2π when λ , u (cf. [56, Eq. (13)]; and also see [57], [67], [38]).
When x = 0 in (1.5), we have the generalized Eulerian type numbers:

Hn (0; u; a, b, c; λ) = Hn (u; a, b, c; λ) ,

which is defined by means of the following generating function:

at − u
λbt − u

=

∞∑
n=0

Hn (u; a, b, c; λ)
tn

n!
, (1.5)

(cf. [56]; and also see [57], [67], [38]).
In the special case when λ = a = 1 and b = c = e, the generalized Eulerian type polynomials are reduced to

the Eulerian polynomials (or Frobenius Euler polynomials) which are defined by means of the following generating
function:

1 − u
et − u

ext =

∞∑
n=0

Hn (x; u)
tn

n!
(1.6)

(cf. [8], [9], [10], [11], [32], [38], [55]). Moreover, setting x = 0 in (1.6), we have the Eulerian numbers:

Hn (0; u) = Hn (u)

(cf. [8], [9], [10], [11], [32], [38], [55]).
Substituting u = −1 and x = 0 into (1.6), we have

Hn (0;−1) = Hn (−1) = En

(cf. [8], [9], [10], [11], [32], [38], [55]).
The Stirling numbers of the second kind, S 2 (n, k), are defined by the following generating function:(

et − 1
)k

k!
=

∞∑
n=0

S 2 (n, k)
tn

n!
(1.7)

(cf. [1]-[78]; and references therein).
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By using (1.7), an explicit formula for the numbers S 2 (n, k) is given by:

S 2 (n, k) =
1
k!

k∑
j=0

(−1)k− j
(
k
j

)
jn (1.8)

with k > n, S 2 (n, k) = 0 (cf. [1]-[78]).
The Stirling numbers of the second kind are also given by the following generating function including falling

factorial:

xn =

n∑
k=0

S 2 (n, k) (x)k (1.9)

(cf. [1]-[78]; and references therein).
The Fubini numbers, wg(n), are defined by means of the following generating function:

1
2 − et =

∞∑
n=0

wg(n)
tn

n!
, (1.10)

(cf. [16], [18], [19], [20], [21]).
Combining (1.7) with (1.10), the following relation is derived:

wg(n) =

n∑
j=0

j!S 2(n, j), (1.11)

(cf. [16], [18], [20], [21]).
The Dobinski numbers, D(n), are defined by means of the following generating function:

Fd(t) =
1

eet−1 =

∞∑
n=0

D(n)
tn

n!
, (1.12)

(cf. [19, Eq. (3.15)]).
The Dobinski numbers are related to the exponential numbers (or the Bell numbers) and other combinatorial

numbers. The exponential numbers, which not only occur often in probability, but also are associated with that of the
Poisson-Charlier polynomial, are defined by

Fe(t) = eet−1 =

∞∑
n=0

B(n)
tn

n!

(cf. [16], [31], [52], [58]). Using the above generating functions, one has the followingw well-known results:

B(n) =

n∑
j=0

S 2(n, j)

(cf. [16], [31], [52], [58]). Since
Fe(t)Fd(t) = 1,

for n ∈ N, we have
n∑

j=0

(
n
j

)
B(n − j)D( j) = 0.

In [65] and [66], we defined the λ-Apostol-Daehee numbers of higher order. Generating function for the λ-
Apostol-Daehee numbers, Dn (λ) is given by:

log λ + log (1 + λt)
λ (1 + λt) − 1

=

∞∑
n=0

Dn (λ)
tn

n!
(1.13)
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(cf. [65], [66]). Recently, the λ-Apostol-Daehee numbers have been also studied by many authors such as [15], [35],
[37], [65], [66], [72].

By using (1.13), we have

D0(λ) =
log λ
λ − 1

,

D1(λ) = −
λ2 log λ
(λ − 1)2 +

λ

λ − 1
,

D2(λ) =
2λ4 log λ
(λ − 1)3 +

λ2 (1 − 3λ)
(λ − 1)2 ,

D3(λ) = −
6λ6 log λ
(λ − 1)4 +

λ3
(
11λ2 − 7λ + 2

)
(λ − 1)3 ,

and so on (cf. [37], [65], [66], [72]).
For n ∈ N, combining the equation (1.13) with the following well-known series

log(1 + t) =

∞∑
n=1

(−1)n+1 tn

n
,

|t| < 1, we have

D0 (λ) +

∞∑
n=1

Dn (λ)
tn

n!

=
log λ
λ − 1

+
log λ
λ − 1

∞∑
n=1

(−1)n
(
λ2

λ − 1
t
)n

+
1

λ − 1

∞∑
n=1

(−1)n+1 λn tn

n

+
1

λ − 1

∞∑
n=1

(−1)n+1 λn tn

n

∞∑
n=1

(−1)n
(
λ2

λ − 1
t
)n

assuming that |λt| < 1. By applying the Cauchy multiplication rule to the right-hand side of the above equation for two
series product, after some elementay calculation, we arrive at the following explicit formula for the numbers Dn (λ):

For n = 0, we have

D0 (λ) =
log λ
λ − 1

and for n ≥ 1, we have

Dn (λ) = (−1)n+1 n!

 λn

n(λ − 1)
−

λ2n log λ
(λ − 1)n+1 +

n∑
k=1

λn+k

(n − k) (λ − 1)k+1

 .
For another explicit formulas for the numbers Dn (λ), see [37], [65], [66], [72]). Among others, in [37], Kucukoglu
and Simsek gave the following explicit formula for the numbers Dn(λ):

Dn(λ) = n! (−1)n
(
λ2

λ − 1

)n
 log λ
λ − 1

−
1
λ

n−1∑
k=0

1
k + 1

(
λ − 1
λ

)k
 (1.14)

(cf. [37]).
When λ = 1 in (1.13), we have

Dn (1) = Dn

where Dn denotes the Daehee numbers (cf. [17], [23]; and see also [15], [37], [65], [66], [72]).
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By using (1.13), one has a computation formula for the Daehee numbers Dn as follows:

Dn = (−1)n n!
n + 1

(1.15)

(cf. [23], [49]; and see also [71]).
The Changhee numbers, Chn, are defined by the following generating function:

2
2 + t

=

∞∑
n=0

Chn
tn

n!
(1.16)

(cf. [25], [33]).
By using (1.16), one has a computation formula for the Changhee numbers Chn as follows:

Chn = (−1)n n!
2n (1.17)

(cf. [25], see also [33], [71]).
In [56, Eq. (37)], we defined the numbers Yn (u; a) and the polynomials Yn (x, u; a) by means of the following

generating functions, respectively:

GY (t, u, a) =
1

at − u
=

∞∑
n=0

Yn (u; a)
tn

n!
(1.18)

and

HY (x, t, u, a) = GY (t, u, a)axt =

∞∑
n=0

Yn (x, u; a)
tn

n!
(1.19)

where a ≥ 1; u , 0, u , 1 and
∣∣∣∣t log a + log

(
1
u

)∣∣∣∣ < 2π.
Putting a = 1 in (1.18), we have

Y0 (u; 1) =
1

1 − u
(cf. [56, p. 22]). Substituting a = 1 into (1.19), we obtain

Y0 (x, u; 1) =
1

1 − u

These numbers and polynomials have been also studied in the following references [1], [56], [67].
When we substitute x = 0 into (1.19), we have

Yn (0, u; a) = Yn (u; a) .

It is time to give brief summary of this paper as follows:
In Section 2, we define Apostol type new classes of numbers and polynomials. We give some preperties of these

numbers.
In Section 3, we construct two new functions by applications of p-adic integrals including Volkenborn and

fermionic integrals which yields generating function for two new families of special combinatorial numbers and
polynomials.

In Section 4 and Section 5, we introduce the aforementioned two new families of special combinatorial numbers
and polynomials with their generating functions. Moreover, we give some fundamental properties of these combina-
torial numbers and polynomials, and derive identities and formulas for these combinatorial numbers and polynomials.
In Section 4, we also introduce a presumably new zeta-type function which interpolates a special case of one of the
newly introduced combinatorial numbers at negative integers. Interpolation functions of these combinatorial numbers
are defined with the aid of the derivative operator. Some properties of these functions are studied.

In Section 6, new numbers including combinatorial sums are defined, and some open problems are raised involving
these new numbers.

In Section 7, we conclude the results of this paper with some comments and observations.
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2. Apostol type new classes of numbers and polynomials

Here, we define the Apostol type of the numbers Yn (u; a) and the polynomials Yn (x, u; a) by means of the fol-
lowing generating functions. These numbers and polynomials denote by Yn (u; a, λ) and Yn (x, u; a, λ), respectively:

gY (t, u, a, λ) =
1

λat − u
=

∞∑
n=0

Yn (u; a, λ)
tn

n!
(2.1)

and

hY (x, t, u, a, λ) = gY (t, u, a, λ)axt =

∞∑
n=0

Yn (x, u; a, λ)
tn

n!
, (2.2)

where a ≥ 1; u , 0, 1.
Let us briefly give some well-known numbers to which the numbers Yn (u; a, λ) are related.
Putting a = 1 in (2.1), we obtain

Y0 (u; a, λ) =
1

λ − u
.

We also note that
Yn (u; a, λ) =

1
λ

Yn

(u
λ

; a
)
. (2.3)

When a = e, for n ∈ N, we also obtain

Yn−1 (u; e, λ) =
1
nu
Bn

(u
λ

)
. (2.4)

Combining (2.4) with (1.3), we get

Yn (u; e, λ) = −
1

2u
En

(
−

u
λ

)
,

Yn (u; e, λ) =
1

λ − u
Hn

(u
λ

)
.

Substituting u = −1 and λ = 1 into above equation, we have

Yn (−1; e, 1) =
1
2

En.

Let also us give some formulas for the numbers Yn (u; a, λ) and polynomials Yn (x, u; a, λ).
Using (2.1), we get

λ

∞∑
n=0

Yn (u; a, λ)
tn

n!

∞∑
n=0

(log a)n tn

n!
− u

∞∑
n=0

Yn (u; a, λ)
tn

n!
= 1.

Using the Cauchy rule for the product of two converging series to the left hand side of the previous equation, the
following equation is found after some algebraic calculations:

λ

∞∑
n=0

n∑
v=0

(
n
v

)
Yv (u; a, λ) (log a)n−v tn

n!
− u

∞∑
n=0

Yn (u; a, λ)
tn

n!
= 1.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the following theorem:

Theorem 2.1. Let
Y0 (u; a, λ) =

1
λ − u

.

For n ≥ 1, we have

Yn (u; a, λ) =
λ

u

n∑
v=0

(
n
v

)
Yv (u; a, λ) (log a)n−v. (2.5)

44



Simsek / Montes Taurus J. Pure Appl. Math. 3 (1), 38–61, 2021

With the help of the recurrence relation given by Eq. (2.5), for n = 1, 2, 3, . . ., some values of the numbers
Yn (u; a, λ) are found as follows:

Y1 (u; a, λ) = −
λ log a

(λ − u)2 ,

Y2 (u; a, λ) =
λ
(
log a

)2

(λ − u)3 (u + 2 − λ),

and so on.
Combining (2.1) with (2.2), we get

∞∑
n=0

Yn (x, u; a, λ)
tn

n!
=

∞∑
n=0

Yn (u; a, λ)
tn

n!

∞∑
n=0

(x log a)n tn

n!
.

Using the Cauchy rule for the product of two converging series to the right hand side of the previous equation, the
following equation is found after some algebraic calculations:

∞∑
n=0

Yn (x, u; a, λ)
tn

n!
=

∞∑
n=0

n∑
v=0

(
n
v

)
Yv (u; a, λ) (x log a)n−v tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the following theorem:

Theorem 2.2. Let n ∈ N0. Then we have

Yn (x, u; a, λ) =

n∑
v=0

(
n
v

)
Yv (u; a, λ) (x log a)n−v. (2.6)

Using Eq. (2.5) and Eq. (2.6), for n = 1, 2, 3, . . ., some values of the polynomials Yn (x, u; a, λ) are found as
follows:

Y0 (x, u; a, λ) =
1

λ − u
,

Y1 (x, u; a, λ) =
log a
λ − u

x −
λ log a

(λ − u)2 ,

Y2 (x, u; a, λ) =

(
log a

)2

λ − u
x2 −

2λ
(
log a

)2

(λ − u)2 x +
λ
(
log a

)2

(λ − u)3 (u + 2 − λ),

and so on.

3. Two new families of special combinatorial numbers and polynomials derived from p-adic integrals

In this section, we introduce two new families special combinatorial numbers and polynomials derived from p-adic
integrals which are briefly given as follows:

Let Zp denote the set of p-adic integers. Let K be a field with a complete valuation. Let f ∈ C1
(
Zp → K

)
, set of

continuous derivative functions.
The Volkenborn integral (bosonic p-adic integral) of the function f on Zp is given by

∫
Zp

f (x) dµ1 (x) = lim
N→∞

1
pN

pN−1∑
x=0

f (x) , (3.1)

where
µ1 (x) =

1
pN
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(cf. [26], [27], [53], [71]; and the references cited therein).
By using (3.1), the Bernoulli numbers Bn is also given by the p-adic integral of the function xn as follows:∫

Zp

xndµ1 (x) = Bn (3.2)

(cf. [26], [27], [53], [71]; and the references cited therein).
With the help of (3.1), Kim et al. [23] gave the Daehee numbers Dn by the following p-adic integral of the function

(x)n as follows: ∫
Zp

(x)n dµ1 (x) =
(−1)n n!

n + 1
= Dn. (3.3)

Recently, by using (3.1) and (3.3), many properties and applications of the function (x)n were given by Simsek
[71].

The fermionic p-adic integral of function f on Zp is given by∫
Zp

f (x) dµ−1 (x) = lim
N→∞

pN−1∑
x=0

(−1)x f (x) , (3.4)

where
µ−1 (x) = (−1)x

(cf. [28], [29], [30], [32], [71]; and the references therein).
Using (3.4), the Euler numbers En is also given by the fermionic p-adic integral of the function xn as follows:∫

Zp

xndµ−1 (x) = En (3.5)

(cf. [28], [29], [30], [32], [71]; and the references therein).
With the help of (3.4), Kim et al. [25] gave the Changhee numbers Chn by the following fermionic p-adic integral

of the function (x)n as follows: ∫
Zp

(x)n dµ−1 (x) =
(−1)n n!

2n = Chn. (3.6)

Recently, by using (3.4) and (3.6), many properties and applications of the function (x)n were also given by Simsek
[71].

3.1. Construction of generating function for combinatorial numbers denoted by y8,n (λ; a)
Here, by applying the Volkenborn integral to the following function

f (t, x; λ, a) =
(
λ + at

)x
,

(
λ, x, t ∈ Zp

)
(3.7)

we construct the following function which is used to define generating function for the numbers y8,n (λ; a):∫
Zp

(
λ + at

)x
dµ1 (x) =

log
(
λ + at)

at + λ − 1
. (3.8)

By applying Mahler’s theorem, (proved by K. Mahler (1958) [53]) to (3.8), we have many interesting results since
continuous p-adic-valued function f on Zp in can be written as in terms of polynomials. By using Binomial theorem
(3.8), we get

∞∑
m=0

(
at

λ

)m ∫
Zp

(
x
m

)
λxdµ1 (x) =

log
(
λ + at)

at + λ − 1
.
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Combining the above equation with (3.3) in the case when λ = 1, we have the following generating functions:

∞∑
m=0

Dm
atm

m!
=

log
(
1 + at)
at .

Remark 3.1. The above series can be also studied in different manners with the aid of following well-known generating
functions for the harmonic numbers Hm:

∞∑
m=1

Hmtm =
log (1 − t)

t − 1
(3.9)

(cf. [16, 51, 78, 79]).

3.2. Construction of generating function for combinatorial numbers denoted by y9,n (λ; a)
Here, by applying the fermionic integral to (3.7) on Zp, we construct the following function which is used to define

generating function for the numbers y9,n (λ; a):∫
Zp

(
λ + at

)x
dµ−1 (x) =

2
at + λ

. (3.10)

By using Binomial theorem (3.10), we get

∞∑
m=0

(
at

λ

)m ∫
Zp

(
x
m

)
λxdµ−1 (x) =

2
at + λ

.

Combining the above equation with (3.6) in the case when λ = 1, we have the following generating functions:

∞∑
m=0

Chm
atm

m!
=

2
at + 1

.

4. Generating functions for new classes of combinatorial numbers y8,n (λ; a) and polynomials y8,n (x, λ; a) de-
rived from the p-adic integral (3.8)

In this section, by aid of equation (3.8), we define the combinatorial numbers y8,n (λ; a) and the combinatorial
polynomials y8,n (x, λ; a) respectively as follows:

K1 (t; a, λ) :=
log

(
λ + at)

at + λ − 1
=

∞∑
n=0

y8,n (λ; a)
tn

n!
, (4.1)

and

K2 (t, x; a, λ) := axtK1 (t; a, λ) (4.2)

=

∞∑
n=0

y8,n (x, λ; a)
tn

n!
.

For functions K1 (t; a, λ) and K2 (t, x; a, λ), when λ , 0, we asume that∣∣∣∣∣∣at

λ

∣∣∣∣∣∣ < 1

and ∣∣∣∣∣∣t log a + log
(

1
λ − 1

)∣∣∣∣∣∣ < π.
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When λ = 0, using (4.1),we have
t log a

et log a − 1
=

∞∑
n=0

y8,n (0; a)
tn

n!
.

Combining the above function with (1.1), we get

y8,n (0; a) = (log a)nBn.

Here, we note that all the constraints given in [76]-[78] also apply to the generating functions given in equation
(4.1) and equation (4.2).

Before giving the results of this section and the following sections, we would like to give a brief explanation for the
relevant numbers given in the index of the relevant numbers. That is, we now give brief information about notations
and index for the above special combinatorial numbers and polynomials (and also for numbers and polynomials in the
next section) is given as follows:

The author has recently defined many different Peters and Boole type combinatorial numbers and polynomials. He
gave some notations for these numbers and polynomials. For instance, in order to distinguish them from each other,
these polynomials are labeled by the following symbols:

y j,n(x; λ, q), j = 1, 2, . . . , 9, and also Yn(x; λ). Therefore, for the numbers y9,n (λ; a) the number 9 is only used for
index representation for these polynomials (cf. [54]-[73]).

Here, by using these generating functions, we give not only fundamental properties of these polynomials and
numbers, but also new identities and formulas including these numbers and polynomials, the Daehee numbers, the
Stirling numbers of the second kind, the Apostol-Bernoulli numbers, the Apostol-Euler numbers, the λ-Apostol-
Daehee numbers and the numbers Yn (λ; a). In addition, we introduce a presumably new zeta-type function which
interpolates the numbers y8,m (1; a) at negative integers.

By using (4.1) and (4.2), for x = 0, we have

y8,n (0, λ; a) = y8,n (λ; a) .

With the help of (4.1) and (4.2), we also get

∞∑
n=0

y8,n (x, λ; a)
tn

n!
=

∞∑
n=0

(
x log a

)n tn

n!

∞∑
n=0

y8,n (λ; a)
tn

n!
.

Using the Cauchy product in the above equation yields

∞∑
n=0

y8,n (x, λ; a)
tn

n!
=

∞∑
n=0

n∑
j=0

(
n
j

) (
x log a

)n− j y8, j (λ; a)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, a computation formula for the polynomials
y8,n (x, λ; a) is obtained as in the following theorem:

Theorem 4.1. Let n ∈ N0. Then we have

y8,n (x, λ; a) =

n∑
j=0

(
n
j

) (
x log a

)n− j y8, j (λ; a) . (4.3)

Setting a = 1 in (4.1), we have

K1 (t; 1, λ) =
log (λ + 1)

λ
=

∞∑
n=0

y8,n (λ; 1)
tn

n!
.

From the previous equation, the following relations are derived:

y8,0 (λ; 1) =
log (λ + 1)

λ
, (4.4)
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and for n ≥ 1,
y8,n (λ; 1) = 0.

Moreover, combining (4.4) with (1.13), we also obtain

y8,0 (λ; 1) =
log (λ + 1)

λ
=

∞∑
n=0

Dn
λn

n!
.

Thus, we see that y8,0 (λ; 1) gives us the generating function for the Daehee numbers.
By combining (1.18) with (4.1), we get the following functional equation:

GY (t, 1 − λ, a) log
(
λ + at

)
=

∞∑
n=0

y8,n (λ; a)
tn

n!
. (4.5)

By using (4.5), we get

∞∑
n=0

Yn (1 − λ; a)
tn

n!

(
log (λ) + log

(
1 +

at

λ

))
=

∞∑
n=0

y8,n (λ; a)
tn

n!
.

Assuming that | a
t

λ
| < 1, we have

∞∑
m=0

y8,m (λ; a)
tm

m!
= log λ

∞∑
m=0

Ym (1 − λ; a)
tm

m!
+

∞∑
m=0

m∑
k=0

(
m
k

)
Ym−k (1 − λ; a)

×

k∑
n=0

n+1∑
j=0

(
n + 1

j

)
(−1)n j!S 2(k, j)

(
log a

)k

(n + 1)λn+1

tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation, we arrive at the following theorem:

Theorem 4.2. Let λ , 0, 1 and m ∈ N0. Then we have

y8,m (λ; a) = Ym (1 − λ; a) log (λ) +

m∑
k=0

(
m
k

)
Ym−k (1 − λ; a) (4.6)

×

k∑
n=0

n+1∑
j=0

(
n + 1

j

)
(−1)n j!S 2(k, j)

(
log a

)k

(n + 1)λn+1 .

Combining (4.6) with (1.15), after some elementary calculations, we arrive at the following theorem:

Corollary 4.3. Let λ , 0, 1 and m ∈ N0. Then we have

y8,m (λ; a) − Ym (1 − λ; a) log (λ) (4.7)

=

m∑
k=0

(
m
k

)
Ym−k (1 − λ; a)

k∑
n=0

(n + 1)
n+1∑
j=0

S 2(k, j)
(
log a

)k Dn

λn+1(n + 1 − j)!
.

Combining (4.7) with (2.3), we arrive at the following result:

Corollary 4.4. Let λ , 0, 1 and m ∈ N0. Then we have

y8,m (λ; a) − λYm

(
λ − λ2; a, λ

)
log (λ) (4.8)

=

m∑
k=0

(
m
k

)
λYm−k

(
λ − λ2; a, λ

) k∑
n=0

(n + 1)
n+1∑
j=0

S 2(k, j)
(
log a

)k Dn

λn+1(n + 1 − j)!
.
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Setting a = e in (4.1), we have

K1 (t; e, λ) =
log

(
λ + et)

et + λ − 1
=

∞∑
n=0

y8,n (λ; e)
tn

n!
.

By combining the above equation with (1.2), we get
∞∑

n=0

y8,n (λ; e)
tn

n!
=

1
2 (λ − 1)

∞∑
n=0

En

(
1

λ − 1

)
tn

n!

(
log (λ) + log

(
1
λ

et + 1
))
.

From the above equation, we have
∞∑

n=0

y8,n (λ; e)
tn

n!
=

log (λ)
2 (λ − 1)

∞∑
n=0

En

(
1

λ − 1

)
tn

n!

+
1

2 (λ − 1)

∞∑
n=0

En

(
1

λ − 1

)
tn

n!

∞∑
m=0

(−1)m e(m+1)t

(m + 1) λm+1 .

After some elementary calculations in the above equation, we obtain
∞∑

n=0

y8,n (λ; e)
tn

n!
=

log (λ)
2 (λ − 1)

∞∑
n=0

En

(
1

λ − 1

)
tn

n!

+
1

2 (λ − 1)

∞∑
n=0

En

(
1

λ − 1

)
tn

n!

∞∑
m=0

(−1)m

(m + 1) λm+1

×

m+1∑
j=0

j!
(
m + 1

j

) (
et − 1

) j

j!
.

Combining the previous equation with (1.7), we have
∞∑

n=0

y8,n (λ; e)
tn

n!
=

log (λ)
2 (λ − 1)

∞∑
n=0

En

(
1

λ − 1

)
tn

n!

+
1

2 (λ − 1)

∞∑
n=0

En

(
1

λ − 1

)
tn

n!

∞∑
m=0

(−1)m

(m + 1) λm+1

×

m+1∑
j=0

j!
(
m + 1

j

) ∞∑
n=0

S 2 (n, j)
tn

n!
.

Therefore
∞∑

n=0

y8,n (λ; e)
tn

n!
=

log (λ)
2 (λ − 1)

∞∑
n=0

En

(
1

λ − 1

)
tn

n!
+

1
2 (λ − 1)

∞∑
n=0

tn

n!

n∑
k=0

(
n
k

)

×

k∑
m=0

m+1∑
j=0

(−1)m j!
(

m+1
j

)
(m + 1) λm+1 En−k

(
1

λ − 1

)
S 2 (k, j) .

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the following theorem:

Theorem 4.5. Let λ , 0, 1 and n ∈ N0. Then we have

y8,n (λ; e) =
D0 (λ)

2
En

(
1

λ − 1

)
+

1
2 (λ − 1)

n∑
k=0

(
n
k

)
(4.9)

×

k∑
m=0

m+1∑
j=0

(−1)m j!
(

m+1
j

)
(m + 1) λm+1 En−k

(
1

λ − 1

)
S 2 (k, j) .
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By combining the equation (4.9) with (1.3), after some elementary calculations, we arrive at the following theorem:

Theorem 4.6. Let λ , 0, 1 and n ∈ N0. Then we have

y8,n (λ; e) = −
D0 (λ)
n + 1

Bn+1

(
1

1 − λ

)
−

1
(λ − 1)

n∑
k=0

(
n
k

) k∑
m=0

(−1)m

(m + 1) λm+1

×

m+1∑
j=0

j!
(
m + 1

j

)
Bn−k+1

(
1

1−λ

)
S 2 (k, j)

n − k + 1
.

Substituting λ = 1 into (4.1), and using (1.13), we have

∞∑
m=0

y8,m (1; a)
tm

m!
=

∞∑
n=0

Dn
ant

n!
.

From the above equation, we get

∞∑
m=0

y8,m (1; a)
tm

m!
=

∞∑
n=0

Dn

n!

∞∑
m=0

(nt)m

m!
(
log a

)m .

Therefore
∞∑

m=0

y8,m (1; a)
tm

m!
=

∞∑
m=0

∞∑
n=0

Dn

n!
(
n log a

)m tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation, we have following theorem:

Theorem 4.7. Let m ∈ N0. Then we have

y8,m (1; a) =

∞∑
n=0

Dn

n!
(
n log a

)m . (4.10)

Theorem 4.8. Let m ∈ N0. Then we have

y8,m (1; a) =

∞∑
n=0

Dn

n!

m∑
j=0

(
n
j

)
j!S 2 (m, j)

(
log a

)m .

Proof. By combining (4.10) and (1.9), we have

y8,m (1; a) =

∞∑
n=0

Dn

n!

m∑
j=0

(
n
j

)
j!S 2 (m, j)

(
log a

)m .

Thus proof of theorem is completed.

4.1. Interpolation function for the numbers y8,n (λ; a)
Here, using the following derivative operator in the following equation

∂k

∂tk f (t)|t=0 (4.11)

to the generating function for the numbers y8,n (λ; a), we define unification of zeta type function which is interpolates
the numbers y8,n (λ; a) at negative integers. We give some properties of this interpolation function.
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By applying the derivative operator in equation (4.11) to both sides of the equation (5.1), we get

y8,k (λ; a) =
∂k

∂tk

{
log

(
λ + at)

at + λ − 1

}
|t=0 .

Assuming that | a
t

λ
| < 1 (λ , 0, 1) to guarantee the convergence range of the following power series, the above equation

reduces to the following relation:

y8,k (λ; a) =
∂k

∂tk


∞∑

n=0

(−1)n atn log λ
(λ − 1)n+1 +

∞∑
n=0

n∑
j=0

(−1)nat(n+1)

( j + 1)λ j+1 (λ − 1)n+1− j

 |t=0 .

Therefore,

y8,k (λ; a) = log λ
∞∑

n=0

(−1)n nk(log a)k

(λ − 1)n+1 +

∞∑
n=0

n∑
j=0

(−1)n(n + 1)k(log a)k

( j + 1)λ j+1 (λ − 1)n+1− j . (4.12)

With the help of analytic continuation technique applied to Lerch type zeta function, using (4.12), we arrive at the
following definition of the interpolation function for the number y8,k (λ; a):

Definition 4.9. Let a ≥ 1. For λ ∈ C \ {0, 1} (| 1
λ−1 | < 1) and s ∈ C, a unification of zeta type function Z1(s; a, λ) is

defined by

Z1(s; a, λ) =
log λ

(log a)s

∞∑
n=1

(−1)n

ns (λ − 1)n+1

+
1

(log a)s

∞∑
n=0

 n∑
j=0

(−1)n

( j + 1)λ j+1 (λ − 1)n+1− j

 1
(n + 1)s

where λ ∈ C \ {0, 1} (| 1
λ−1 | < 1; Re(s) > 1).

Substituting a = e into (4.13), we have

Z1(s; e, λ) = log λ
∞∑

n=1

(−1)n

ns (λ − 1)n+1 +

∞∑
n=0

n∑
j=0

(−1)n

( j + 1)λ j+1 (λ − 1)n+1− j (n + 1)s
.

Putting λ = 2 and Re(s) > 1, then we have

Z1(s; e, 2) = log 2
∞∑

n=1

1
ns +

1
2

∞∑
n=0

n∑
j=0

(−1)n

( j + 1)2 j(n + 1)s , (4.13)

Note that the functionZ1(s; a, λ) has the following property: This function is analytic continuation, except s = 1 and
λ = 2 in whole complex plane. Combining (4.12) with (4.13) at negative integer, the following Theorem show that
theZ1(s; a, λ) interpolates the numbers y8,k (λ; a) at negative integer.

Theorem 4.10. Let λ ∈ C (| 1
λ
| < 1) and k ∈ N. Then we have

Z1(−k; a, λ) = y8,k (λ; a) .

Let’s define a new zeta type function below for λ = 1 in the equation (4.1) without applying the derivative operator.
This new zata type function interpolates the numbers y8,m (1; a) at negative integers.

Assuming that |at | < 1. Combining (4.10) with (1.15), after some elementary calculations, we obtain
∞∑

m=0

y8,m (1; a)
tm

m!
=

∞∑
n=0

(−1)n atn

n + 1
.

Therefore
∞∑

m=0

y8,m (1; a)
tm

m!
=

∞∑
n=0

(−1)n 1
n + 1

∞∑
m=0

(n log a)m tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation, we have following theorem:
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Theorem 4.11. Let m ∈ N0. Then we have

y8,m (1; a) =
(
log a

)m
∞∑

n=0

(−1)n nm

n + 1
. (4.14)

Remark 4.12. By substituting m = 0 into (4.14), we get

y8,0 (1; a) =

∞∑
n=0

(−1)n

n + 1
= log (2) .

By using (4.14) yields the following presumably new zeta-type function which interpolates the numbers y8,m (1; a)
at negative integers:

Definition 4.13. Let s ∈ C with Re (s) > 0. Let a ∈ (1,∞). We define

Z2 (s, a) =
1

(log a)s

∞∑
n=1

(−1)n

(n + 1) ns . (4.15)

The function Z2 (s, a) interpolates the numbers y8,m (1; a) at negative integers. That is, substituting s = −m, (
m ∈ N), into (4.15), using (4.14), with the help of analytic continuation technique applied to Lerch type zeta function,
we arrive at the following theorem:

Theorem 4.14. Let m ∈ N. Then we have

Z2 (−m, a) = y8,m (1; a) .

5. Generating functions for new classes combinatorial numbers y9,n (λ; a) and polynomials y9,n (x, λ; a) derived
from the p-adic integral (3.10)

In this section, by the help of (3.10), we construct generating functions for the numbers y9,n (λ; a) and the polyno-
mials y9,n (x, λ; a) respectively as follows:

Y1 (t; a, λ) :=
2

at + λ
=

∞∑
n=0

y9,n (λ; a)
tn

n!
, (5.1)

and

Y2 (t, x; a, λ) := atxY1 (t; a, λ) (5.2)

=

∞∑
n=0

y9,n (x, λ; a)
tn

n!
.

For functions Y1 (t; a, λ) and Y2 (t, x; a, λ), when λ , 0, we asume that∣∣∣∣∣∣t log a + log
(

1
λ

)∣∣∣∣∣∣ < π.
When λ = 0, using (5.1),we have

y9,n (0; a) = 2(− log a)n.

Using (5.2), we get
2etx log a

λ
(

1
λ
et log a + 1

) =

∞∑
n=0

y9,n (x, λ; a)
tn

n!
.

Combining the above function with (1.2), after some elementary calculations, we get the following relation between
the polynomials En (x; λ) and y9,n (x, λ; a):
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Theorem 5.1.
y9,n (x, λ; a) =

(log a)n

λ
En

(
x;

1
λ

)
. (5.3)

Here, we note that due to the relation in equation (5.3), all the constraints given in [76]-[77], [78] also apply to the
generating functions given in equation (5.1) and equation (5.2).

Here, by using these generating functions, we give not only fundamental properties of these polynomials and
numbers, but also new identities and formulas including these numbers and polynomials, the generalized Eulerian
type numbers, the Euler numbers, the Fubini numbers, the Stirling numbers, the Dobinski numbers, the numbers
Yn (λ; a).

By using (5.1) and (5.2), we have
y9,n (0, λ; a) = y9,n (λ; a) .

From the equations (5.1) and (5.2), we have

∞∑
n=0

y9,n (x, λ; a)
tn

n!
=

∞∑
n=0

(
x log a

)n tn

n!

∞∑
n=0

y9,n (λ; a)
tn

n!
.

Using the Cauchy product in the above equation yields

∞∑
n=0

y9,n (x, λ; a)
tn

n!
=

∞∑
n=0

n∑
j=0

(
n
j

) (
x log a

)n− j y9, j (λ; a)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, computation formula for the polynomials
y9,n (x, λ; a) is given by the following theorem:

Theorem 5.2. Let n ∈ N0. Then we have

y9,n (x, λ; a) =

n∑
j=0

(
n
j

) (
x log a

)n− j y9, j (λ; a) . (5.4)

Setting a = e and λ = −2 in (5.1), yields the following equation:

2
et − 2

=

∞∑
n=0

y9,n (−2; e)
tn

n!
.

Combing the above equation with (1.10), we have

∞∑
n=0

y9,n (−2; e)
tn

n!
= −2

∞∑
n=0

wg(n)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we have following corollary:

Corollary 5.3. Let n ∈ N0. Then we have
y9,n (−2; e) = −2wg(n). (5.5)

By aid of (1.11) and (5.5), we also arrive at the following corollary:

Corollary 5.4. Let n ∈ N0. Then we have

y9,n (−2; e) = −2
n∑

j=0

j!S 2(n, j).
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Substituting at = eet−1 and λ = 0 into (5.1), we have

2
eet−1 =

∞∑
m=0

y9,m (λ; e)
(
et − 1

)m

m!
.

Combining the above equation with (1.7) and (1.12), we obtain

2
∞∑

n=0

D(n)
tn

n!
=

∞∑
m=0

y9,m (λ; e)
∞∑

n=0

S 2 (n,m)
tn

n!
.

Thus,

2
∞∑

n=0

D(n)
tn

n!
=

∞∑
n=0

n∑
m=0

y9,m (λ; e) S 2 (n,m)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the following theorem:

Theorem 5.5. Let n ∈ N0. Then we have

D(n) =
1
2

n∑
m=0

y9,m (λ; e) S 2 (n,m) .

By replacing λ by −λ in (5.1), we get

2
at − λ

=

∞∑
n=0

y9,n (−λ; a)
tn

n!
.

Combing the above equation with (1.18), we have

2
∞∑

n=0

Yn (λ; a)
tn

n!
=

∞∑
n=0

y9,n (−λ; a)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we have following corollary:

Corollary 5.6. Let n ∈ N0. Then we have

Yn (λ; a) =
y9,n (−λ; a)

2
.

Setting a = 1, x = 0 and λ = 1 in (1.5), yields the following equation:

1 − u
bt − u

=

∞∑
n=0

Hn (u; 1, b, c; 1)
tn

n!
.

Combining the above equation with (5.1), we get
∞∑

n=0

Hn (u; 1, b, c; 1)
tn

n!
=

1 − u
2

∞∑
n=0

y9,n (−u; b)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the following result:

Corollary 5.7. Let n ∈ N0. Then we have

y9,n (−u; b) =
2

1 − u
Hn (u; 1, b, c; 1) . (5.6)

Substituting b = e into (5.6), we get

y9,n (−u; e) =
2

1 − u
Hn (u) .

When u = −1 in the above equation, we arrive at the following corollary:

Corollary 5.8. Let n ∈ N0. Then we have
y9,n (1; e) = En.
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5.1. Interpolation function for the numbers y9,n (λ; a)

Here, using the following derivative operator in equation (4.11) to the generating function for the numbers
y9,n (λ; a), we define unification of zeta type function which is interpolates the numbers y9,n (λ; a) at negative inte-
gers.

By using (5.1), and assuming that | a
t

λ
| < 1, we get

2
λ

∞∑
n=0

(−1)n
(

at

λ

)n

=

∞∑
n=0

y9,n (λ; a)
tn

n!
. (5.7)

By applying the following derivative operator in equation (4.11) to both sides of the equation (5.7), we get

y9,k (λ; a) =
2(log a)k

λ

∞∑
n=1

(−1)n nk

λn , (5.8)

where | 1
λ
| < 1.

With the help of analytic continuation technique applied to Lerch type zeta function, using (5.8), we arrive at the
following definition of the interpolation function for the number y9,k (λ; a):

Definition 5.9. Let a ≥ 1. For
λ ∈ C (|

1
λ
| < 1) and s ∈ C,

a unification of zeta type functionZ3(s; a, λ) is defined by

Z3(s; a, λ) =
2

(log a)s

∞∑
n=1

(−1)n

nsλn+1 (5.9)

where Re(s) > 1.

Note that the function Z3(s; a, λ) has the following property: This function is analytic continuation, except s = 1
and λ = 1 in whole complex plane. Combining (5.9) with (5.8) at negative integer, the following Theorem show that
theZ3(s; a, λ) interpolates the numbers y9,k (λ; a) at negative integer.

Theorem 5.10. Let λ ∈ C
(
| 1
λ
| < 1

)
and k ∈ N. Then we have

Z3(−k; a, λ) = y9,k (λ; a) .

Corollary 5.11. Let λ ∈ C
(
| 1
λ
| < 1

)
and k ∈ N. Then we have

∞∑
n=1

(−1)n nk

λn =
λy9,k (λ; a)
2(log a)k .

Remark 5.12. In [75] and [47], Srivastava et al. studied and investigated many properties of the following unification
of the Riemann-type zeta functions: For β ∈ C (|β| < 1),

ζβ(s; v, c, d) =

(
−

1
2

)v−1 ∞∑
n=1

βdn

cd(n+1)ns , (5.10)

where v ∈ N0 and c and d are positive real numbers. Substituting s = −m into the above equation, we have

ζβ(−m; v, c, d) =
(−1)vm!
(m + v)!

ym+v,β(v, c, d),
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where the numbers ym+v,β(v, c, d) which is a unification of the Bernoulli, Euler and Genocchi numbers defined by
Ozden[46] by means of the following generating function:

2v−1tv

βbetx − ab =

∞∑
m=m

ym,β(v, c, d)
tm

m!
.

In [34], Kim et al. applied derivative operator dk

dtk to the λ-Bernoulli numbers, the constructed interpolation of these
numbers.

By combining (5.9) with (5.10), we get the following result:

Corollary 5.13. Under the conditions given above equations (5.9) and (5.10), then we have

Z3(s; a, λ) =
2

λ(log a)s ζ− 1
λ
(s; 1, 1, 1)

Remark 5.14. Recently many authors have studeied on the unification of the Bernoulli, Euler and Genocchi numbers
ym,β(v, c, d) with their interplation function (cf. [4], [15], [22], [39], [40], [42], [45], [46], [64], [74]-[81]).

Remark 5.15. Most of the reductions to other zeta-type functions and their applications have not been discussed here.
Relationships between zeta type functions have already been given in detail in the relevant studies, given the list of
the references [1]–[81].

6. A new family of combinatorial sums and numbers arising from (4.13)

In this section, new numbers including combinatorial sums are defined, and some open problems are raised in-
volving these new numbers.

Let’s define the following new combinatorial numbers that arise from the equation (4.13):

y(n, λ) =

n∑
j=0

(−1)n

( j + 1)λ j+1 (λ − 1)n+1− j (6.1)

Substituting λ = 2 into (6.1), we get

y(n) := y(n, 2) =

n∑
j=0

(−1)n

( j + 1)2 j+1 . (6.2)

Open problems:

1. One of the first questions that comes to mind what is generating function for the numbers y(n) and the numbers
y(n, λ) .

2. Some of the other questions are what are the special families of numbers the numbers y(n) are related to.

3. What are the combinational applications of the numbers y(n).

4. Can we find a special arithmetic function representing this family of numbers?

We can partially solve the second question as follows:
By (1.14), Kucukoglu and Simsek [37] also gave the following novel finite combinatorial sum in terms of the

numbers Dn(λ):
n−1∑
k=0

1
k + 1

(
λ − 1
λ

)k

=
(−1)n+1 λDn(λ)

n!

(
λ − 1
λ2

)n

+
λ log λ
λ − 1

, (6.3)

(cf. [37]).
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Combining (6.1) and (6.3) shows that there exist a relationship between the numbers y(n, λ) and λ-Apostol-Daehee
numbers. In general response to the second question, is there any other relationships of the numbers y(n, λ) with other
well-known numbers and functions?

Even substituting λ = 2 into (6.3), and replacing n by n + 1, we get

n∑
k=0

1
(k + 1) 2k =

(−1)n
Dn+1(2)

22n−1 (n + 1)!
+ 2 log 2 (6.4)

which, by (6.2), yields that there exist a relationships between the numbers y(n) and the λ-Apostol-Daehee numbers
Dn(λ) as in the following form:

y (n) =
Dn+1(2)

22n (n + 1)!
+ (−1)n log 2.

Recently, reciprocals of binomial coefficients, combinatorial sums have been studied in many different areas (cf.
[5], [16], [60], [62], [80]).

With the help of the beta function and the gamma function, Sury et al. [80, Eq. (3)] gave the following combina-
torial sum:

1
n + 1

n∑
j=0

λ j(
n
j

) =

n∑
j=0

λn+1 + λn− j

( j + 1)(1 + λ)n+1− j .

The left-hand side of the above type sum has been recently studied by many mathematicians such as Mansour
[44], Simsek [60], [61] and [62], and Sury et al. [80]; and also the references cited therein.

Substituting λ = 1 into the above equation, we obtain

y(n,−1) =
1

2 (n + 1)

n∑
j=0

1(
n
j

) . (6.5)

The left hand side is the analogue of our alternating combinatorial sum in the equation (6.2).

Remark 6.1. In [60], [61] and [62], the author showed that the finite sums, containing reciprocals of binomial coeffi-
cients, are also related to the Beta-type polynomials and the Bernstein basis functions. The readers may refer to the
aforementioned papers in order to see these relationships.

7. Conclusion

In this paper, two new special combinatorial numbers and polynomials are constructed with the aid of p-adic
integrals including Volkenborn and fermionic integrals. By these generating functions, fundamental properties of
these combinatorial numbers and polynomials are investigated, and we derive various new identities and formulas
containing the newly introduced combinatorial numbers and polynomials, Bernoulli numbers and polynomials, Euler
numbers and polynomials, Apostol-Bernoulli numbers and polynomials, Apostol-Euler numbers and polynomials,
Stirling numbers of the second kind, Daehee numbers, Changhee numbers, the generalized Eulerian type numbers,
Eulerian polynomials, Fubini numbers, Dobinski numbers. Additionally, we introduced a presumably new zeta-type
function, which interpolates a special case of one of the newly introduced combinatorial numbers at negative integers.
As a conclusion, the results of this paper have the potential to affect many researchers not only in combinatorics, but
also in other relevant fields.

For future studies:
It is planned to investigate more properties and relations of the newly introduced combinatorial numbers and

polynomials.
Examining the fundamental properties of the new zeta-type functions defined in this study and their relations with

other fields are among our future projects. It includes our other main projects in solving the obvious problems that
arise in defining these functions.

As a result, we believe that the results obtained in this article have the potential to be used in many different areas.
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