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Abstract

In 1974, Lavoie, Tremblay and Osler (Fundamental properties of fractional derivatives via Pochhammer integrals in *Fractional
calculus and its applications’, Lecture Notes in Mathematics No.457, Springer-Verlag, (1974), 323-356) introduced a Pochhammer
integral representation in the complex plane for the fractional derivative D¢ z’(In z)° f(z) where § = 0 or 1. In the same vein, we
present integral representations for the fractional derivative of functions with multiple branch-points (complex power, logarithm
and their product) DY Uy 4. p.q (2—20, W= z)| where Us g, p. 4 (2—20, w—2) = f(z—20, W—2)(z—20)"(W—2)7 [In(z—20)]° [In(w —2)]’
for value 9, 6 = 0 or 1 usmg a Pochhammer contour integral enclosing the singularity points zg, z and w. The symbol (¥) indicates
that w — z inside the Pochhammer contour used for the representanon The transformation formula for the fractional operator
Dy Us 6. pirq (2= 20,w = FF((HI)) :‘iol Us,0.0:g-a-1 W — 2,2 — zo)| is derived. Some applications to special functions are
given; in particular, a new form of the Leibniz rule is obtained. Another apphcatlon includes many summation formulas involving
the orthogonal polynomials and deduced from the Christoffel-Darboux identity for orthogonal polynomials.

Keywords: Fractional derivatives, Pochhammer contour, Transformation formulas, Special functions, Leibniz rules,
Christoffel-Darboux formula, Logarithmic singular function
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1. Introduction

The fractional derivative of order a of the function f(z) with respect to another function g(z), D¢ ) f(2), is a
generalization of the familiar derivative d” f(z)/(dg(z))" to non-integral values of n. This concept has been introduced
in many different ways, by generalizing the classical definitions of the nth derivative where the order n is replaced
by an arbitrary @. We can find many surveys, various applications of ’fractional calculus’ and discussions on several
of these approaches in texts [24, 37, 38]. A large bibliography can be found in [47]. Fractional calculus has been
successfully employed in many topics of mathematical analysis [38], in particular, to solve ordinary [19], partial
[7, 36] and integral equations [6]. A large number of formulas from elementary calculus have been shown to be
special cases of more general expressions involving fractional derivatives. These include Taylor’s series [25, 28, 29],
the Leibniz rule [10, 25, 26, 28, 31, 34], the chain rule and applications [27, 42], Lagrange’s expansion [28] and others
[30, 32, 48, 49].

This fractional operator has been intensively investigated in many directions [23, 25, 38]. To the best of the
author’s knowledge, the most widely-known representation for the fractional derivative is the Riemann-Liouville
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integral. The properties of this integral representation for a different class of functions have been extensively studied
in the past; let us cite the important papers of M. Riesz [36] and of G.H. Hardy and J.E. Littlewood [16, 17, 18]. In
the complex plane, the fractional derivative DZ(Z) has several representations (formal series and integral). In particular,
the Riemann-Liouville integral representation for g(z) = z — zo takes the following form:

] 74
Dy {z—20)" f(2)} = Y f FEOE -2 (z— )™ "de (1.1)

with two ‘half-plane’ restrictions R(a) < 0 and R(p) > —1 and where the integration is done along a straight line
from zj to z. Integrating by part m times, we obtain

D! _{(z-z20)"f(@)} = %Dg—}rg{(z - 20" f(2)}. (1.2)
This allows us to modify the restriction R(a) < 0 to R(a) < m [36]. The representation (1.1) is valid for z € R — zg
where R is simply the connected open region of analyticity of f(z) containing the point zo. One of the ways to
obtain analytic continuation with respect to parameters of @ and p is to use different kinds of loop contour integral
representation for D‘ZY_ZU{(Z —20)” f(2)}. For instance, T.J. Osler [25, 26, 27, 28, 29, 30, 31, 32, 33] gave an important
improvement for fractional calculus in the complex plane by using the Cauchy integral representation which uses a
single loop contour starting and ending at zq after enclosing the branch point ¢ = z.

ra (z+)
DI (= 20 f(@) = g f FOE - 200 — 2\ de. (13)

Note that the Cauchy integral (1.3) was given as early as 1888 by Nekrasov [22]. The use of this contour has the effect
of reducing the ‘half-plane’ restrictions R(@) < Otoa # —1,-2,-3, ...

In [20] (see also [43]), it is shown that a symmetric loop starting from z encircling the branch point zo changes
the restriction R(p) > —1to p # 0,+1,+2,... and that a double loop of the Pochhammer type drawn around the two
points of branching zy and z makes it possible to reduce simultaneously both "half-plane’ restrictions R(a) < 0 and
R(p) > —1. The most important representations which have been proposed for this concept are reviewed in [21]. In
particular, those representations which appear to be of greatest interest for use in exploring the special functions, are
presented in detail.

Our interest centers on those functions whose fractional derivatives yield the classical ”special functions of math-
ematical physics”. If ®(z) is a "special function” (such as an orthogonal polynomial (Laguerre, Hermite, Legendre,
Jacobi, etc.), or a function (Bessel, Legendre, hypergeometric, Appell, etc.)), then it is usually possible to represent
®(z) by means of fractional differentiation in the form ®(z) = h(z) Dg(Z)F (z) , where g(z) is a univalent function, and
h(z) and F(z) are functions which are of a more elementary nature than ®(z) (See Section 2). For most representations
of special functions ®@(z) with fractional derivatives, we find from experience that g(z) = z — zp and F(z) must be an
analytic function of the form ©(z) = D7_, (z — z0)"(In(z — 20))° f(z) with 6 = 0 or 1, where f(z) is analytic in a region
R containing z = zp. The notation used for the special functions is that of Erdelyi et al. [9]. Table 16.1 shows how we
can represent the higher transcendental functions by taking fractional derivatives of more elementary functions. For
an extensive table of fractional derivatives, see [9, vol. 2, pp.185-200].

From the set of fractional derivative representations studied in [21], the definition using a Pochhammer contour
appears to be more efficient because it has the fewest restrictions on parameters @ and p for ©(z) = D7_, (z—z0)"(In(z—
20))° f(z) among those using Cauchy contours. In [43, 20], where the representation for fractional derivative using a
Pochhammer contour is presumably presented for the first time, the analyticity of ©(z) = Dy, (z—2z0)"(In(z— )’ f(2)
is investigated in detail with reference to the four variables z, zy, @, and p.

The primary purpose of this paper is to introduce the new Pochhammer contour integral representation for frac-

tional derivatives which applies to logarithmic functions (Section 3)

DY Q) = D2 { f(2)z — 20)"(w = ) [In(z = 20))° [In(w - 1], _} (1.4)

for values 6,6 = 0 or 1. The use of the symbol (*) is to indicate the fact that w = z is applied inside the integral
used for the representation. To deduce the final version of the full representation for the fractional derivative of the
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branched function Q(z) , we must successively obtain the integral representations for each of the values of ¢ and 6.
This approach was investigated for the first time by the author in [43]. Note that we can find a similar approach to
Campos for the fractional derivative of analytic functions or functions with one or more branch points [4, 5].

In [20, 21], the power and usefulness of the Pochhammer representation of fractional derivatives was demonstrated
by using it to prove basic theorems concerning the analytic behavior of D7, {(z — z0)” In(z — 20) f(2)}, 6 =0 or 1, as
functions of the three variables z, @ and p. Without the use of the Pochhammer representation, the analyticity of these
results would probably be quite lengthy and cumbersome to prove. Also, with the use of the Pochhammer contour
representation, it becomes easier to deduce the analytic conditions for the complex functions considered in this paper.

Moreover, the Pochhammer representation defined in Section 3 also allows f(z) to have an essential singularity
at zo. This is not the case for the Riemann-Liouville representation (1.1) and the Cauchy integral representation (1.3)
used by Osler. In particular, if f(z) = 1 in (1.4), we obtain

DY {(z—20)"(w — 2)7 [In(z — 20)]° [In(w — 2)]’}
_ T +pl(-a+q)
I'—a)ld+p+qg-a
{lv(1+p)—u(l + p+q—a)+Inz— 2]
[W(—a+q)—v(l+p+g—a)+Inz-2)]" -6y (1 + p+q - )}

(1.5)

|*
w=zZ

(z—zo)"" ™

where /() = I'(z)' / I'(z) is the Psi (or Digamma) function. These results appear presumably for the first time in [43].

In this paper, we do not intensively study the analytic properties of the functions of «, p, ¢, zo, z, 6 and 6, where in
many cases, some singularities are removable. The detailed study of fractional derivative analyticity of these functions
with respect to the set of variables and parameters will be the subject of a future paper. However, for each fractional
representation, we give the more general conditions on the parameters to guarantee the existence of these functions.

Another observation can also be made about the Pochhammer representation. These representations present in the
aggregate (integrand and contour) a perfect symmetry with respect to variables and parameters zg and z, p and —a — 1.
This led to the surprising formula of transformation [43, 49]

T(1+p) poi
—D
r(_a) =20

The right-hand side of (1.6) also suggests considering the fractional derivative for the more general complex
branched function

DY Az~ 20) f@) = (- fw+z -2} . (1.6)

w=z

A(?,O;p,q(z_ZO,W_Z): (17)
{2 = 20,w = 2)(z = 20)"(w = )7 [In(z = 20)]° [In(w = 2)1°}.
One of the main results of this paper is presented in Theorem 4.1 . The proof is established by using the Pochhammer

contour representation (3.47). We also give an extension to a more general class of functions. This theorem explicitly
gives the full conditions of validity of the following transformation formula for fractional derivatives:

DY f(z—z0,w — 2)(z — 20)"" (W = 2){In(z — 20)}*{In(w — 2)}’

CT(1 +p)
- T(-a)

D fw = 2,2 = 20)(z = 2007w = 2)"{In(z = 20)){In(w — 2))°I;,,

(1.8)

*
W=z

(which is valid in view of (1.1) for only two ‘half-plane’ restrictions R(@) > 0 and R(p) > —-1).

In Section 5, we have chosen two examples of applications among many possibilities to illustrate the effectiveness
of representations using Pochhammer outlines. The first application presents a new form of the Leibniz rule for the
fractional derivative of the product of two functions is obtained and the analog formula((5.4) and (5.5)). In the second
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application uses the well-known Christoffel-Darboux formula ([1, Eq.(22.12.1)],[8, vol. 2, p.159, Eq.(10)])

= 1.9
i hnkn+1 X—=Yy ( )

i Ji)fi(y) kn  frr1 (0 fa () = fa () frr1 (V)

J=0 hi
(where f;(x) is the jth term of a set of orthogonal polynomials of squared norm /; and k; denotes the highest coeflicient
of f;(x)) and (1.5) (with zg = 6 = # = 0) to obtain new summation formulas involving orthogonal polynomials are
obtained ((5.13) and (5.14)).

Other more complicated examples using formulas ((1.4) with 6 = 8 = 0) and (1.6) can be found in [10, 11, 12, 13,
14, 40, 43, 49, 50].

Several of these results are obtained by using an associated operator noted g(Z)OZ and called the well-posed frac-
tional operator, which was introduced by the author in [43]. This operator can significantly reduce the number of
time-consuming calculations, as it was recently shown in [48]. A publication discussing the analyticity and various
properties of this operator is in process of preparation.

No single representation for the fractional derivative is optimal for all applications. Nevertheless, the Pochhammer
representation is often the most useful when trying to prove a general theorem on fractional differentiation. The
experience of the author indicates that such proofs would be far less efficient and convincing if other representations
are used. With these new representations of the fractional derivative, we can easily obtain results on special functions
such as summation formulas, summation theorems, links between special functions, and so on.

2. Examples using the fractional derivative for some special functions

We briefly give some examples to show the efficiency of the new representations of the fractional derivative to
obtain results on some special functions. For example, using (1.5) with zo = 6 = 6 = 0, it is easy to demonstrate that

DIZP(1 —wz + ZZ)ﬁii‘V:Z

__I'd+p N B, 1+p,-a
I'M+p-a 2p/2—a//2+1/2,p/2—(/y/2+1

2

Z
Z] @2.1)

where 3 F, is a special case of the hypergeometric function ([8], Vol. 1, Eq(1),p. 182)
] _ N @, 2

a1, @,...,qp

— 2.2
ﬁbﬁ%""ﬁl] ¢ ( )

LTI, (B 1!

ok q[
We can also obtain new expressions for many special functions in terms of the fractional derivative. For example,

Fs(a, &, B, B's v; xz, y2)

_ T
r(v/2)

a/,ﬂ/ *
y/2

2.3)

Zl—y D;WZ Zy/Z—lel |:a518 y(w _ Z)]

v/2

o

w=z

where F5(a, @, B, B'; v; x, y) represents the third Appell function of two complex variables [8, Vol. 1, Eq. 8, p.
224]. Expressions such as (2.1) and (2.3) are useful because they offer the ability to derive new formulas often by
specifying parameters. For example, if we put z = 2 in (2.1), we obtain after the following transformation:

-, 1 - -24,1
3F) Bl p,-a 1]:2F1 A +p2] 2.4)
pl2—a/2+1/2,p/2 —a/2+1 l+p-«a
where — or 1 + p or both are negative or zero integers for the convergence. Successively putting @ = —p — 1 and
a = —p in (2.4), we obtain, using the well-known Gauss theorem [35, p. 49]

_T©(c—a-b)

" I(c-a)l(c-b) 5

,b
2F1[a 1
c
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the following three summation theorems

—2n,1+p (1/2), 2n-1,1+p ]
2= —12" _ (5=0,1); F 2(=o0. 2.6
"MNMis+2p ] (p+(5+1/2),,((S s 2 1[ 1+2p (2.6)
Now, if we put @ = @’ = y/2 in (2.3), we obtain with z = 1
F3(y/2,7/2.8.8 7 x.y) = (L =) Fi(y/2;8.8y: x,y/(y — 1)) 2.7)

a link between the two Appell functions F3 and F ([3],[8, Vol.1, Eq.(6), p. 224.]). As another example, by putting
B =vy2,dd =y2—-a-Bandy = —x/(1 — x)in (2.3), withz = 1,y — 2y and 2y # 0,-1,-2,..., we obtain a
presumably new reduction formula :

a+vy,f+y

Fy(a,y—a—-B.8,v;2y;x,—x/(1 = x)) = (1 = x)" . F; 2y

x]. 2.8)

If we put x = 1/2 in (2.8) with y = 1/2 + /2 + /2, using the Gauss’s second theorem [39, Eq. (III-6), p. 243]

7 a,b l] _r/2ra/2+a/2 +b/2) 2.9)
M2+ a/2+b/2[2] T T2 +a/2)T(1/2 + b)2)’ ‘
we get
Fs(a,1/2 - a/2-B/2,8,1/2 —a/2-B/2;1 +a+B;1/2,-1)
3 21122552 \[r (1 + a + B) 2.10)
T T(3/4+3a/4+B/HT(B/4 + a4 +38/4)° '
Now, with 8 = 1 — @ — 2y and using Bailey’s theorem [39, Eq. (III-7), p. 243]
ZFl[a, l-a _ L'b/2)I(1/2+ b/2) ’ @.11)
b I'b/2+a/2T(1/2+b/2—a/2)
we obtain
Fs(a,3y - 1,1 —a—-2y,y/2;2y;1/2,-1)
2 \rT(2y) 2.12)

TTG/2—a/2+ 1/2TGy/2 +a)2)

Summation theorems (2.10) and (2.12) seem new. Note that most special functions can be represented in more than
one way by fractional derivatives of elementary functions (see [21, Table 17.1, p, 261 and representations of Appell
functions and confluent functions of Humbert, p. 260]. For example, we have the Psi function

Y(x) = -y +Inz - T(x)z'*D} ¥ Inz, (2.13)
=T(x - D™D [(x = Dilnw = In(w - 2)} = 1] Inz - (2.14)
the Jacobi polynomial [35, Eq.(1), p. 254],
a F'd+a+n) (-2 45,
(@.B) — _ \atp+n n
P = Fvashem o D1 =)™ (1 + gy, (2.15)
—1)" -B
— ( 1) F(l +ﬁ+7’l) (1 +Z) D(l+n(1 +Z)(¥+ﬁ+n(1 _Z)n (216)

S T +a+B8+n) 2m! 1
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and the third Appell function [8, Vol.1, Eq.(8), p. 224],

Fs(a, o ,B,B; v, x,y)
F(y - O!’)F(’)/ - B/) xl+a’7yDg+fl/—7xa+ﬁ’fyD§+ﬁ/—}’xﬁf1
[(a@)I(B)

{(1 -0 5 F, [“ ;ﬁ

x+y—xy}}, 2.17)

F(Y - a/)r(y) 1+(y—yD;l+a/’—yya/_l tl—yD;Y*)’t(l—l
I'(a)l'(@)

{a=xn?a—yow-)*} (2.18)

w=t

By using extensions of calculus formulas to the higher calculus of fractional derivatives, combined with fractional
derivative representations for higher functions, it is possible to produce many interesting results involving the special
functions. This observation has appeared previously [13, 15, 19, 25, 26, 27, 28].

It seems reasonable to assume that important properties of higher transcendental functions [12, 25, 26, 27, 28, 29,
30, 31, 41, 42, 44] and extensions of fractional operators [2, 44, 45, 46] could be derived from a knowledge of rules
to manipulate fractional derivatives.

For instance, from (2.13) and (2.14), using (1.6) with zo = 0 and (1.1), it is easy to deduce the following integral
representations of functions y/(x) and ¢’ (x) :

Y(x) = =y +Inz— (x= DD 72 In(w - 2)| __,

=—y+Inz-(x— 1™ fz &7 In(z - &)dé, (R(x) >2) (2.19)
0

W'(x) = 27D 7 [(x - D{lnw — Inz} — D] In(w - 2)|

W=z

"z
= gl f E72(x— Diinz —ng} - D]In@z - Hdé,  (R(x) = 2). (2.20)
0
Similarly, from (2.15), we can obtain the following relations for Jacobi polynomials:
{o = (1 = 2d/dz}Py"P (2) = (@ + m)P PV (g) 2.21)
and the application of (2.21) s times on itself gives the following interesting operational formula:
fa—s+1-(1-2d/d2}PyP (@) = (@+n— s+ 1),P () (2.22)

where

_ a+n) :{ ala+ Da@+2)...(a+n-1) meN;aeC) (2.23)

(@), = T(@) 1 (n=0;a €C{0}) -

From (2.17) and using the Euler transformation [35, Eq.(5), p. 60], if we put @ + o’ = 8+ 8’ = vy, we quickly find
the reduction formula [8, Vol. 1,Eq. (4),p. 238],

v+— a,
Fi(a,y —a,B,y = B;y; x,y) = (1 —y)**# y2Fl[ yﬁ

xX+y-— xy]. (2.24)

Also, if we sety = a + @’ in (2.18), we obtain after some calculations (with ¢ = 1)

F3(a'7 a,7ﬁ’ﬁ,;a + CV,;X’)’) = (1 _y)iﬁl Fl(a,7ﬁ’ﬂ,;a + a/;x’)’/(y - 1))’ (225)

a special case but more general than (2.8).
These are three typical examples that demonstrate the effectiveness of fractional calculus in obtaining results in
the field of special functions. Many others examples can be easily found [43, See Ch.3].

12
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3. Representations of fractional derivatives via Pochhammer integrals

In this section, we briefly review some known representations for the fractional derivatives in the complex plane.

As it was done in [21], we start with the analytic continuation of the Riemann-Liouville representation of D{_, {(z — z0)” f(2)},
which has the two ‘half-plane’ restrictions R(a) < 0 and R(p) > —1, by the Cauchy integral representations (see also

[20, 25, 26]). We gradually introduce representations of D;_, {(z — z0)” f(2)} using known contour integrals to elimi-

nate these restrictions step by step. Finally we get the representation using a Pochhammer contour that has the fewest
restrictions on the parameters p, @ amd z [20, 21].

In this paper, we introduce a new Pochhammer representation of fractional derivatives in the complex domain of
(1.4) which contains multiple valued factors like general power and logarithmic functions. The symbol (*) indicates
that the point ¢ = w is inside the Pochhammer contour integration in the complex plane & considered and w is in the
neighborhood of the point ¢ = z. The contour P is a four loop contour in the complex plane called ’Pochhammer
contour’ and is given by P = C; U C, U C3 U Cy4. The components of P are shown in Fig. 2, which also shows how the
branch lines of the integrand (3.1) pass through the point & = a without crossing P at any other point. In this integral,
the point & = w is inside the loops C; and C3 plotted around the singular point & = z. The part of the branch line of
the multiple valued factor (w — &£)7 between the points € = w and & = a is also totally inside the loops C; and C; (see
Fig. 2), such that branch lines of (z — £)™*! and (w — ¢)? merge when w « z. Again, this new form is suggested by
the symmetry of the Pochhammer contour with regard to branch points z( and z (see Fig. 2). Of course, we rediscover
all classical representations for the fractional derivative Dy_ {(Z —20)” {In(z — 20)}° f(z)} (6 = 0or 1) presented in the
literature using the Pochhammer, Cauchy and Riemann coutour integrals in the complex plane.

We recall that our main interest centers on finding fractional derivatives with respect to g(z) of order a of

F(@@)eR) — gw)1{In[g(@)1) {In[g(w) - g1V, _

(see (3.47)), but to simplify, we treat the case g(z) = z — z9. The results obtained can be easily generalized to g(z).

In Theorem 3.1, we express the integral on the contour P as a sum of integrals on the components C;, i € {1,2, 3, 4}.
We start by defining some notation.

Conventions and Notations 3.1 We introduce the following:

1- The region R is an open, simply connected set in the complex plane containing the point z = g~'(0);

2- The function f(g(z)) is an analytic function for z € R;

3- The notation f G dé = G(¢) d¢ denotes integration on contours which start at £ = a, where
Cla,b*) C(a,b*:G1,G2)
the integrand G(¢) takes the initial value E?(a) = @G at the start of the integration process and the final value

G(a) = G, after traversing the contour C (Fig. 1). We assume that the contour remains inside the region R and
that the integrand G(¢) varies ‘continuously’ as we traverse the contour C

4- The integrand G(¢) will contain multiple valued factors such as (¢ — zo)?, (z — £)%, In(€ — z0), In(z — &), etc.
The branch cut for these functions always passes through the beginning and ending point of the contour of
integration, but never cuts the contour elsewhere. Unless otherwise stated, these functions denote the principal
branch, which is that continuous range of the function for which arg(¢ — z9) (or arg(z — £)) is zero when & — 79
(or z — &) is real and positive. In the event that the branch line is arg(¢é — zo) = 0 (or arg(z — £€) = 0), then we
define the principal branch by -2 < arg(¢ — zp) (or arg(z — &) < 0).

We begin by considering the following complex integral

I= f Fs0(&: 203 2)dé 3.1)
P
with the multiple valued function

Fs0(£;20;2) = fEE = 20)’(w = &) [In(€ — 20)]’ [In(w = )]’ (z — &)™ 3.2)

13
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A Im(g)

Branch line
of G(§)

1 Re(E)
>

Figure 1. Single-loop contour

where the contour P is a four loop contour in the complex plane called ’Pochhammer contour’ and is given by
P =C,UC, UC3U Cy. The components of P are shown in Fig. 2, and also it shows how the branch lines of the
integrand (3.1) pass through the point £ = a without crossing P at any other point. In this integral, the point £ = w is
inside the loops C; and C3 plotted around the singular point ¢ = z. The part of the branch line of the multiple valued
factor (w — £)7 between the points & = w and & = a is also totally inside the loops C; and C3 (see Fig. 2), such that
branch lines of (z — £)~! and (w — &)7 merge when w « z.

Theorem 3.1. Let
Fse(a;20:2) = fa)a - z0)"(z — @) [In(a - z0]° [In(z — @)’ (3.3)

where 6, 8 = 0 or 1, denote the principal value of the integrand of (3.1) as defined in Conventions and Notations 3.1,
when we begin to traverse P. Then using the notation adopted in (3.1) we have:

fFﬁ,e)(f; 20;2)d€é =
P

(1 - ™) Fs.0(&:20;2) d€

Cla,z*; Fs.0(a; 205 2), Fo.0(a; 203 2) €40 (14276 In(z—a)) |

- 2nise*™ P f Fo,0(&; 205 2) dé
Cla.z*: Fo,0(a: z0:2). Fo,6(a: 203 2) €740 (1427i6/ In(z—a)) |

+ (eZm'(p+q—(l) _ eZnip)

f Fo.€:20:2) dé
Cla.zgs Fsola: 2052) €277, Fo o(as 203 2)(142i8/ In(a—20)) |

+ 2mife* i Pra=@) (3.4)

f Fs,0(&; 205 2) dé.
Cla,zg; Fso(a; 2032) €727, F5 0(a; 205 2)(14+27i6/ In(a—z0)) |
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Proof. Using the notation adopted in (3.1) we have:

[ R A A
P C1UC,UC3UCy C C; C; Cy

where . / ‘
Ci = Cla,z"; Fspla; 20;2), Fa,e(GQZOQZ)ezm(q - a)(l * %)]
[ a,z8;
N 2mif
¢, = c| Faolaizoi2)e m'Eq a)(l j)L m)g i5
P+ g—a Al o
| Fs.oa;z0:2)e (1 * ln(z—a))(1 " ln(a‘ZO))
[ a,77;
C; = C FJ,G(Cl;ZO;Z)ezm(p Ta- a)(l + ln(2Z7Tl_9a) )(1 " ln(izﬂi6ZO) ),
.o N2TTD _omid
: Fs.9(a;z0; 2)e (1 + In(a — Zo).)
Ci = Claz;Fala 20:2)e"P(1 + ﬁ) Foold:20:2)]-

Figure 2 shows these four components of P, and also shows how the two branch lines of the integrand of (3.1) both
pass through the point & = a without crossing P at any other point. We notice that the integrand of (3.1) returns to the
initial value of Fsg(a; zo; z) after having completely covered the four segments of the Pochhammer contour.
On C,, we have
Fse(a; zo; 2)(1 + 27miIn(z — ) = Fsp(a; 203 2) + 276 Fs0(a; 203 2)
therefore the integral becomes, with respect to Conventions and Notations 3.1,

f Fool&: 2032 dé =
Cy

i f Fs0(&: 203 2) dé
Cla,z: Fs.o(a: 20:2) €270, Fs g(a; z0: 2)(1+27i6/ In(a—z0)) |

+ 2mige P ra=@) f Fs.0(¢; 205 2) dé.
Cla,z5: Fso(a: 20: 2) €277, Fs o(a: 205 2)(1+2mi6/ In(a—20)) |

Similarly, we can rewrite the integral over C3 (and C4) in terms of the integral over C; (and C,). We obtain the
following,

j; Fs9(&;2032)dE = —L Fsola;zo; &) dé =

_ eZm’pf F§,9(§;ZO;Z) df
Cla,z+; Fs.0(a; 203 2), Fs.0(a; 203 2) €00 (14276 In(z-a)) ]

- 2nise™™ P f Fo,6(; 205 2) d€
Cla,z*:Fo,0(a: 20: 2). Fo,0(a: 20: 2) €@ (1427i6/ In(z—a)) |

and
fc Fa ol 20:2) d = — fc Fi ol 20:€) dé (3.3)

— _62m'p

f F50(&;2052) dé.
Cla.zgs Fsola 2032) €277, Fo o(a; 203 2)(1 4278/ In(a—20)) |

By grouping these integral expressions, we get (3.4). This completes the proof.

Next we examine various special cases of the contour integral (3.4) by deforming the Pochhammer contour integral
in different ways. For each case, we try to identify the resulting contour integral with the fractional derivative. By this
way, we deduce new Pochhammer integral representations for the fractional derivative of functions having multiple
valued factors of types (z — z9)?, (w — 2)%, In(z — z¢) or In(w — z). Finally we obtain a full Pochhammer integral
representation for fractional derivatives of (1.4).
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Branch line for

expl-(a +1)(In(z- &)1,
explq(in(w-¢&)l,

In(z- &)andIn(w- &),

Branch line for

explp(In(& - zy)]
and In(§-z,)

Re(&)

Figure 2. The four components of the Pochhammer contour.

3.1. Integral representation of D;_, {(z — z0)’(w — 2)1f (€4}

The first case considered is obtained by putting 6 = 6 = 0 in (3.4) . The goal is now to express (3.4) in terms of
the fractional derivative for these particular values of ¢ and 6. We have

fFo,o(f; 2032) dé
P

= (1 — &) Fo,0(&52052) dé

Cla,z*; Fo,0(a; 203 2), Fo,0(a; 203 2) €¥7@-)]
+ (eZFipra=a) _ p27ipy Fo,0(&;2052) dé

Cla,zj; Fo.o(a; 205 2) €277, Fo 0(a; 23 2)]

= (1 = &¥P) Fo,0(&52052) dé

Cla, z+; Fo,0(a; 205 2), Fo,0(a; 203 2) €27@-]
+ (1 — rita-0) f Fo0(€:20: ) d€. (3.6)

Cla, 73 Fo,0(a; 2032) €240, Fo o(a; 293 7) 2(P+470)]

Now we can deform C(a, z*) into the union of three contours C; U C, U C3 as shown in Fig. 3, where C is a straight
line segment from a almost to z, C; is a small circle centered at & = z, C3 is C traversed in opposite directions.
Similarly, the contour C(a, zg) can be deformed into C4 U Cs U C¢. The path Cy is a straight line segment from a to
almost 79, Cs is a small circle centered at ¢ = z9. Cg is a straight line segment from zy almost to a. With the two

‘half-plane’ restrictions R(a—¢) < 0 and R(p) < —1, integrals over C, and Cs approach zero as both radii of contours
tend to zero.

16
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Branch line for
expl[-(a+1)(In(z-€ )],
explq(In(w-2)],

In(z-€ ) and In(w-§ ) C3

Branch line for
explp(In(&-z,)]
and In(&-z,)

Re(&)

Figure 3. The contour used in integral (3.7).

Thus we get

f Fo.o(&20:2)dé = (1 — &) f Fo.o(&: 20: 2)de + @) f Fool, 20: 2dé]
P a

Z

. 3 20 . a
+ (1 = M ay[eriaa) f Fo,0(&; 203 2)dé + e P+a=) f Fo,0(&; z0; 2)d€]

a 20

- f Fo.o(@dé - & f Foo(@dé — i f Foo(@)de

v o [y eae - [ Fogoaes [ Rooe

20 20

+ f Fo,0(&)d¢ — &P f Fo,o(&)d¢ — ¥ f Fo,0(&)dé

20 20 20

4
4 Pipr-o) f Fo.o(&)dé

20

= (1= e"P)(1 = ) f FEE=20)" =& d¢

| " Foo()dé - & f Fo.o(€)de

20 20

(1= e f FEE =2 (w =&z~ f)“"‘df';z- @37

Recall that the symbol (*) indicates that w — z inside the Pochhammer contour. For the integral (3.7), it means w = z
before evaluating. Using the Riemann-Liouville integral representation (1.1), we recognize the fractional derivative
with ¢ = 0 on the right-hand side of the last equality (3.7). Since (1 — €**?) = —2ie'™ sin pr and T'(—a)(1 — e~ ") =
—2mie™™ /T(1 + a), we rediscover from (3.7) the classical Pochhammer representation for fractional derivative [21,

17



Tremblay / Montes Taurus J. Pure Appl. Math. 3 (1), 7-37, 2021
Eq.(13.6), p.256]

e ™PDE(1 + @)

DI {(z—20)"f(@)} = . fPf(f)(f —2) (2= &)™ dé. (3.8)

4nsinmp

3.1.1. Integral representation of DY__ {(z — z0)"(w — 27 f(D};,—.

=20

With the adopted Conventions and Notations 3.1, we have for p, @ and @ — g not integers and z € R — {zo}

DZ_, {(z = z0)P(w ez
e~ p=a-D(] + @) { ”’4 sin

4rsinnp

(3.9)

} fp FEOE -z (- lag

sin(a — ¢)«

where the symbol (*) indicates that w is in the neighborhood of the point ¢ = z. The point w is inside the loop C(a, z*)
(see Fig. 2) which merges with the singular point z when w — z in the right-hand integral of (3.9).

3.1.2. Analytic continuation of D?_, {(z — z,)"(w — 2)7f (z)}’
Returning to the right hand side of (3.7) where R(a — q) < 0 and R(p) > —1, it is easy to show that

f FE(E — 200" (w = &)Uz — &) dé

W=z

= T(—a) D2, {(z = 20" (W = 2 f Q] _.

ptn
[(w—zo)q f f(§)z( ARGl iR —f)“df]

(w = z0) _
(with ‘@ <1
= 3 EDn gy f FEE = 200"z = £ . G-10)
n=0 !

If £(£) = X cx(é — 20)F (f(£) is analytic at & — zp), we can integrate term by term in (3.10) , using (1.1), to obtain:

f FEE =2 w =Nz - d¢ (3.11)

Z (-1 +p+k)
- I'l+p-a+k)

W=z

F(—q, 1+p+k; 1+ p—a+k; 1)(z—z)"H ok,

Using the Gauss summation theorem (2.5) and the basic formula ((1.5) with 6 = 6 = g = 0) DI__ (z — z0)" =
I'aa+p

T+ (z — z0)’™, after elementary simplifications, we can conclude that
p—

I(-ae)D2_, {(z — 20)"(w — 2 f (D)}

W=Z

= f FEE = 20)"(w =z - &) 'dé|  (w = z before the integration)

W=Z

=T(~a+q)D" 1 (z - 20)" f(2) if R(e — q) < 0. (3.12)

=20
From (3.12) with R(a — ¢) > 0, we have

F( a+q)

D7, {(z = z0)"(w Ta)

D7) (z = 20)" f(2). (3.13)

18
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Also, the right-hand side can be used to obtain an analytic continuation of the left-hand side for all values of parameters
aand gexceptg —a =0,—-1,-2,...witha #0,1,2,... . This is justified in (3.9) by using a Pochhammer contour
integral plotted around z,, and z. It is interesting to note that we can write (3.13) in the following form

( (w

f( )} =D (z-2) ——— f( ) (3.14)

W=z W=z

— 4
Dy, (z = z20)

showing that we can interchange the roles of ¢ and —a.

Remark 3.2. If g equals zero or a positive (or a negative) integer and @ not an integer, we replace the correction

' sin
factor (—a)ﬂ by 1. This is sufficient to be able to conclude that the Pochhammer representation of the fractional
sin(e — ¢)&
derivative D;_, {(z — zo)” f(2)} remains valid if the function f(z) has an isolated and essential singularity at & = z. We
also notice that if w is outside the loop C(a, z*), it is easy to prove that Representation (3.9) remains valid only for

g=0,1,2,...,orwith R(-a+¢q) >0ifg=-1,-2,....

Remark 3.3. If g and « are integers, then
D (== 2)w-2fQ),_,

{( 1! Dl (z-20)f(z) a@a=2q=0

(@—-q)!
0 qzaz=0.

We remember that we have to put w = z after the operation, as shown with the notation [;,__ on the left-hand side of
(3.13). For example, if « = 2 and g = 1, we can verify that

D (= 20)"w = f @), _, = D {(z =20/ (w =2 fQ},_.

21 5 ,
= 17 Deal@a =20/ f@) = =2pz = 20/ f() = 2 = 20" f (@)
Remark 3.4. We must pay special attention to the cases @ = 0,1,2,... and g = —1,-2,-3,... . Recall that we must
put w = z in the integrand before integrating (and not after) on the left side of the equation(3.13). Also @ — g >
0 and we must use the analytic continuation formula from (3.13) to obtain the correct significance and value of
DZ_ {(z = z0)P(w — 2)1 f(2)} | . For example, if @ = 2 and ¢ = —1, we have

W=z

. L(3)e ™
D {z-z0)’w-27"fQ}) = L™ f FEE 200z - &) "de

w=z  Admsinap np
which is equal to
1 "
- 3G 20"z =20 f" () +3p(z = 20)*f (2)
+3p(p = D(z—20)f @) + p(p = D(p = @]

Note that if we use (3.8) on the right hand side of the identity (3.13), we obtain

D {z—20)"w=2""fQI _, (3.15)
—m(p a-2)
= h _ _eyya-2
- (l;n% 4sinnp sin(—=1 — a)nI'(-) j,: A
. —eT ™I 4 ) oo
= (lylf% dxsinap fpf(f)(f —20)’(z = &)"7dé,

which is in agreement with the Pochhammer representation integral (3.9).
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3.2. Integral representation of D;_,, {(z —20)P(w = 2)2(In(z — 20)° f (z)li=Z
Now returning to (3.4), if a — zo with the ‘half-plane’ restriction R(p) > —1 and if we set § = 0, the integral over

the contour Cla, zo] becomes zero. The integral expression (3.4) takes the following form:
fFo‘,o(f; 20; 2)d§ = (3.16)
P

= (1 — &™) F5.0(&; 205 2)d€

Clz0,2*; Fs,0(203 205 2), F5,0(203 203 2)e@=®]

_ 2igeP f  Foo(& 2 2de.
Clz0,2*; Fo,0(05 203 2), Fo,0(20; 203 2)e2m(@=D]

Putting 6 = 0 in (3.16), we can write

f fEE =20z =T d¢ (3.17)
Clzy, 2+ Fo,0(203 205 2), Fo,0(20; 203 2)e27@~]

1
= T fp FOE =20 - & de.

Now we deform the contour of integration C|z,, z"] into the union of three contours C; U C, U C5 as shown in Fig.
4. The path C is a straight line segment from z to almost z, C; is a small circle centered at & = z, C3 is C| traversed
in the opposite direction. With the additional ‘half-plane’ restriction R(a — ¢) < 0, the integral over C, approaches
zero as the radius of the contour tends to zero. Also we must make sure to use the correct branch of the function
(z — €)', In accordance with Conventions and Notations 3.1, the left-hand side of (3.17) can be written in the
following form:

f FEOE -2z - "d¢ (3.18)
Clz0,2*; Fo,0(20: 203 2), Fo,0(203 203 2)e?7@=®]

=(1- eZﬂi(q—a)) fﬂ f(f)(f_ Zo)p(Z —f)q_a_ldf

= (1 - &) f FEE—20)"(w -z — &)™ 'de¢

= (1 - N (—a + q)DI 1 (z - 20)" f(2) |
= (1 - NI (=)D (z - 20)" (W — 27 f(2)|

=20 w=z "

Isolating the fractional derivative expression in the right hand side of (3.18), we obtain:

DL (2= 2)"(w = f)|

1 1 — ¢ 2nia (z*) (3.19)
= T'(—a)(1 - e—2nia) {(i _ ejni(q—a)))} FEE —z0) (2~ f)q_a_ld‘f'

o
Now using (3.19) and from (3.17), we finally deduce the following representation:
3.2.1. First form of Cauchy integral representation of
DY {(z=20)"(w = 2T fM,=

With the adopted Conventions and Notations 3.1, we have for R(p) > —1, @ and « — ¢ are not integers and
Z € R —{z0}

D7, (z=z20)"(w = 2)1f(2) (3.20)
1 1= —2ria (z*)
= Cad oo {(i — ;m.(q_a)))} JEE -2 -7 d¢
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where the symbol (*) indicates that w is in the neighborhood of the point & = z. The point w is inside the loop
C(z,, z*) (see Fig. 4) which merges with the singular point z when w — z in the right-hand integral of (3.20). In

(3.20), it is easy to show that the singularities at « = —1,-2,... ,-Nand @ — ¢ = —1,-2,... ,—M (by integrating
by parts M times in (3.20) ), N and M arbitrary positive numbers, can be removed. The special case g = 0 is called
Im(&)

Branch line for
expl-(a+1)(In(z- )],
explq(In(w - 2)],

In(z-¢) and In(w-§)

Branch line for
explp(In(& - zy)]
and In(§ - zo)

Figure 4. The contour used in integral (3.18).

the first Cauchy type of representation for the fractional derivative ([20, Eq. (2.6), p. 3271, [21, Eq. (11.3), p. 252]),
largely used by Osler [27, 28, 29, 30]:

DI, (z=20)' f(2) (3.21)
(1 + a)ein((ul) (z%) .
= | fO¢-w)@-9"
JTl 20
which is valid for @ not a negative integer, R(p) > —1 and z € R — {z,}. However, note that (3.21) is defined for all
values of @. The apparent singularities at « = —1, -2, -3,... due to factor I'(1 + a) are removable since in this case
—ing
the integrand is analytic, and thus the integral is zero. If both @ and g are integers in (3.20) then % will be
sin(@ — g)«

replaced by 1, as was the case for the Pochhammer contour (see Section 3.1.2).

% I'(—a + . . . . .
Similarly, D7 {(z = z0)"(w = 2)7 f(2)} e = %Dkz‘é (z — 20)? f(z) will be used as an analytic continuation
ifg—a=0,-1,-2,...witha #0, 1, 2, ... . In the case where both & and ¢ are positive integers or zero, then
- -14a! - . .
Dy Az = z0)P(w = z)qf(z)}| __ will be interpreted as (1)fe DY (z - 20)" f(2) and is zero if ¢ > a.
=z w=zg (a_q)’ =20

Moreover, if we return to (3.16) with 6 = 1, we can write
f F 0(¢; 205 2)dé
Clz0,2*; F1,0(20: 203 2), F1,0(203 203 2)e?7@=2]
=—7— | F ; 205 2)d .
(1 =gy |, 108 200 2)de (3.22)
2mie* P

2mi .
(I = emr) Clz0, 2" Fo,0(205 293 2), Fo,0(zy; 205 2)e>ri@-0]

21

Fo,0(¢; zo; 2)dé.
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Multiplying both sides of (3.22) by

(1 + @)e™@*D (e~ gin anr
2mi sin(@ — ¢)mr
sentation for fractional derivatives (3.20) previously deduced, we obtain the new Pochhammer integral representation.

} and identifying each term obtained with the repre-

3.2.2. Integral representation of
D, (@ = 2000 = 9fIn(z - 7)1 £ ()|

*
W=z

With the adopted Conventions and Notations 3.1, we have for p, both @ and @ — ¢ are not integers and z € R — {zp}

D2\ = 20" (w = 2{Inz = 20))° F Q)| _ (3.23)
_ T+ @e ™) (=i sin ar
B 4rsinmp sin(@ — g)m

fp FEE = 20"z = O In(E - 20))°dé

S e~imla-a)

 40(~a)sin® 7p sina — g)m

fp FEOE - 20)P(z - lag

where the symbol (*) indicates that w is in the neighborhood of the point & = z. The point w is inside the loop
C(z, z¥) (see Fig. 3) which merges with the singular point z when w — z in the right-hand integral of (3.23). If
we put 6 = ¢ = 0in (3.23), we obtain once again the classical Pochhammer representation (3.8) already defined by
Lavoie-Osler-Tremblay ([21, Eq. (13.6), p. 256], [20], Eq. (3.1), p. 337).

Remark 3.5. If we put g = 0, we rediscover the Pochhammer representation for fractional derivatives

D¢, (z— 20)"{In(z — 20)}’ f(2) (3.24)
(1 —in(p—a—-1) §
- Tirek f FEONE - 200z — 7 (In(E — 20))dé
TTSINTp P
ra in(a+1)
o RO [ e - - o e
4sin” mp P

largely used by Lavoie-Osler-Tremblay [20, 21] which is valid for @ not a negative integer, p not an integer and
z € R — {z0}. Like for (3.20), it is easy to prove that the singularities at « = —1,-2,-3,...and v — ¢ = -1,-2,-3,...
in (3.23) are apparent. This is also the case for singularities at p = 0,1,2,3,... in (3.23) and (3.24) which can
be removed ([20], Th. 3.2, p. 340). However the singularities p = —1,—-2,-3,... are not removable except if we
consider the function (z — z0)?/[T'(1 + p)]'*® ([20], Observation 3.1, p. 342). For both @ and ¢ integers, the factor

~i"4 gin
¢ o will be replaced by 1. In addition, the transformation formula

sin(a@ — ¢)«
DI, (2= 20)"(w = 2*{In(z — 20’ F @), _. (3.25)
r(_a' + Q) a— )
=—— D7 - 70)’{In(z -
Ty Do (z = 20)"{In(z - 20)}° f(2)
can be used as an analytic continuation for the left-hand side except forg — @ =0,-1,-2,... witha #0,1,2,....

Remark 3.6. As in the previous Section 3.1, we must pay special attention when « and g are both integers such that
q < 0 < . In this case, we have @ — ¢ > 0 and we must put w = z before differentiating. Also with (3.25) we have

DY, (2= 20)"(w = 2){In(z - 20)}’ f(2)],,_, (3.26)

!
— oy
( )(a—q)!

D71 (z = 20)"{In(z - 20)Y’ f ().
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For example, if we puta = 1, g = —1 and 6 = 1 in (3.26), we obtain

= DL - )

D!, (z—z0)’w-2"Inz - Zo)f(Z) 5

-1
= 7{[19(19 - DIn(z - z0) +2p - 1]f(z) +2(z— z0)[pIn(z — z0) + 1]f"(2)

+(z = 20)* In(z = 20) f” @}z — 20)" 2.

(3.27)

Note that if we use (3.24) on the right hand side of the identity (3.25), using the well-known I'(&)I'(1 — @) = n/sin(na),

we obtain

DY, (2~ 20)"{Inz ~ 20))° f(2)
e—ifr(p+q—rz—l)

= — _ a1 _ P
 4T(-a)sinmpsinn(q — @) fpf(f)(f 20)"(z = &) {In(§ - 20)}'dé

n.ein(a/—q+l)

-5 _ D _ —a/—ld
4T(—a) sin® mp sin (g — @) Lf(f)(f w9 ¢

(3.28)

which, after some elementary transformations, is in agreement with the Pochhammer representation integral (3.23).

More explicitly, fora = 1, g = —1 and § = 1, (3.23) becomes

D, {(z = 20)’(w — 2) HIn(z — 20)} f(2)

W=Z

} fp FEE = 20)"(z = &) {In(& — z0)}dlg

B 1"(2)e‘i”p{ e sin an

"~ 4nsinap lsin(a + D
re i s
T e
—inp
= 471'eSI—Il7Tpap ff(f)(f z0)P(z = &) 3d§] f)_3d§
* I f FEE =20z = &) dé
1 —inp
- _E(anﬂp ap [emp sinp D2, {(z ~ Zo)pf(Z)] sinnp D7 iz~ Zo)pf(z))
14
= 35Dl F2)
14
=7 6—(17(19 — Dz - 20" f(2) +2p(z— 20)" " /(@) + (2 — 20)° f”(z))
d
B _Ea_( (P =D =20 2f<z>) (p(z—zo>" Ly (z))

o _ p £
T CREREAE)
which is equal to the right-side of (3.27).

3.3. Pochhammer integral representation of

Dza—zo(Z = 20)"(w = 2){In(w - Z)}Hf(Z)Lj/:z

(3.29)

In the previous section, we considered 8 = 0 in (3.4). Now we start with § = 0, the ‘half-plane’ restriction
R(g — @) > 0 and a — z. Under these conditions, the integral over the contours C[a, z] becomes zero and the integral
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expression (3.4) reduces to the following form:

f Fo.o(&: 20; 2 = (3:30)
P
= (ePMrrame) _ g2mir) f Fo.o(&; 205 2)dé
Clz, 7 Fo,0(z 205 2)e ™27 ,Fy, (25 203 2)]
| DigeHiPH) f Fo.o(&; 20; 2)dé.

Clz, 253 Fo,0(z; 203 2)e™2"P  Fo, (25 203 2)]

Now, if we set 8 = 0 in (3.30), this equation is reduced to the following equality

f FEE 20— )T dé (3.31)
Clz, 233 Fo,0(z: 203 2)e™ 2P, Fo,0(2; 205 2)]

1
- (eri(prg-a) — g2mip) j;f(‘f)(‘f —20)P(z - &) de.

Now we can deform the contour of integration C|z, z(’; ] into C4 U Cs U Cg as shown in Fig. 5. The path Cj is a straight
line segment from z to almost zg, Cs is a small circle centered at £ = zg, Cg is a straight line segment from z to almost
z. If we add the ‘half-plane’ restriction R(p) > —1, the complex integral over Cs approaches zero as the radius of
the contour tends to zero. Choosing the correct branch of the function (¢ — zp)” with respect to the Conventions and
Notations 3.1, the left-hand side of (3.31) can be written in the following form

Im(&)

Branch line for

expl-(a+1)(In(z-&)],

7 explq(In(w - 2)],
In(z-&)andIn(w-¢&)

Branch line for

explp(in(& -2 )] 7
andIn(&-z)

Re(€)
Figure 5. The contour used in integral (3.30) and (3.32).
—a-1
f FE(E - 20)(z =T d¢ (3.32)
Clz, 735 Fo,0(z; 203 2)€™ ™7, F0,0(2; 205 2)]

_ (1 - f FENE - 20 - &7 de

= (1 - e (~a + @)D" (z - 20)" f(2)
= (1 - e PP (=a)D2,, (z — 20’ (W — 2 f(2)|

w=z '
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Also, the fractional derivative term on the right-hand side of (3.32) can be isolated and we can write

1
DY, (- 20)"(w-2f@),_. = a (3.33)

—a-1
| FEE - )7 (- £ de.
Clz, 255 Fo,0(z; 203 2)e2"P ,F,0(2; 205 2)]

We finally deduce the following representation:

3.3.1. Second form of Cauchy representation of

D, @ =2/ w - 27f )|

W=z
With the adoptedConventions and Notations 2.1, we have for R(a — ¢) < 0, p not an integer and z € R — {zo}

D2 (z—20)"w-2f@)|,_. (3.34)
e (z5)

_ _ D _ —a—1
= Disinapl-a) J. FEE =20 (z =T dé.

The point w is outside the loop C(z, z;) which merges with the singular point z when w — z on the right hand side of
(3.33).

Remark 3.7. At the beginning of the contour around zy, we have

(z — z0)! = ePInl-al+iarglz=20)=27) "and at the end we have
(z — z0)P = ePInl-al+iarglz=20))

Remark 3.8. We note the missing symbol (*) in (3.33) and (3.34). We can omit it because the contour C(z, zg ) and
C(z, g 1(0)*) (see Fig. 2.4) passes through the point ¢ = z. For this reason, we must also have the ‘half-plane’
restriction R(a — ¢) < 0. Note also that the contour of integration in (3.34) does not pass through & = zg, and thus
the integral gives no restriction on p. Restrictions on p come from the constant e”” /2i sin 7p. We can however show
that the singularities at p = 0, 1,2,... , M (with M an arbitrary positive number) can be removed. On the other hand,
the singularities at p = —1, -2, -3,... are not removable except if we consider the function (z — z9)” /T'(1 + p) instead
of (z — z0)".

The special case g = 0 is called the second Cauchy representation for the fractional derivative, introduced for the
first time by Lavoie-Osler-Tremblay ([21, Eq.(12.1), p. 252], [20, Eq. (2.7), p.327])

(25)

inp
DY (2 - 20)"f(2) = m f FENE -2 - &)™ dg (3.35)

which is valid for R(a) < 0, p not an integer and z € R — {zo}. More generally, returning to (3.30) with § = 1, we can
write

f _ JEE = 20)"(z = &)T " In(z - §)dé (3.36)
Clz, 283 Fo,1(z: 205 2)e™ 2P, F,1(2: 205 2))

1
2 ff @€ =20 (2= T Inz - &)dé
— e2mir) Jp

- (eZm‘(p+q—a)
2mi(p+q—a)

2mie
(82ﬂi(17+q—a) _ eZﬂip)

—a-1
f _ FEE —20)"(z = T dE.
Clz, 255 Fo,0(z; 203 2)e 2P, F,0(2; 205 2)]
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inp

Multiplying both sides of (3.36) by ,.e—, using (3.33) and (3.35), we obtain
2isinpl(—a)
DI (2= 20)"(w =2 In(w - 2)f)|,_, (3.37)
eirrp
= _ _ — 20z =& 'n(z - &)d
TN T T s fp FOE - 20" - & In(z - £)dé
Zﬂ.ieZni([Hq—Q)

— @ — P —_ )4
(62ni(p+q—(y) _ eZm’p) DZ—ZO(Z ZO) (W Z) f(Z)

W=z
By using the Pochhammer representation integral (3.20) on the right hand side of (3.37) we obtain
D, (z = 20)"(w = 2)"In(w - 2)f(2)|_, (3.38)
einp
= — 20 (z = ) n(z = &)d.
2il"(—a)(e2”"(1’+q—f') _ ezm'p) sin np Lf(f)(f ZO) (Z f) l'l(Z f) f

2rie?mip+a=®)  pminp=a=D(] 4 o) (™™ sin ax
(e27i(p+a—a) _ g2nip) 4 sinntp

sin(a — g)«
fp FEE - 20 (z— T de.
After making simplifications, we obtain from (3.38) the new Pochhammer representation for
D2, (2= 20)"(w — 2){In(w = 2} f(2)|, _.-

3.3.2. Pochhammer integral representation of

D, {(z = 20)"(w = {In(w - D} f()|

%
w=z

With the adopted Conventions and Notations 3.1 for p # 0,+1,+2,...andg—a # 0,1,+2,...and z € R — {20}
we have

D2z~ 20)"(w = {In(w — ) FQ)[]_, (3:39)
in(a—p—1) —ing o3
-9 {e. sin “”} f FENE - 20z — O in(z - O dg
T sinzp sinf@—q)r | J,

nle™ P

+ . .2
4I'(—a) sinzp sin“(g — a)w

f FEOE -2z - d¢
P

where the symbol (*) indicates that w is in the neighborhood of the point ¢ = z. The point w is inside the loop
C(a, 7*) (see Fig. 3) which merges with the singular point z when w — z in the right-hand integral of (3.39). If we
put 8 = g = 0, we obtain once again the classical Pochhammer representation (3.9) already defined by Lavoie-Osler-
Tremblay ([20, Eq. (2.9), p. 331], [21, Eq. (13.7), p. 256]). Again, we can prove that singularities at p = 0, 1,2, ...
can be removed. If 8 = 0, we find (3.9) and the singularities at g — e = 0,-1,-2, ... witha =0, 1,2, ... canbe
removed. If § = 1, we have

*

D, (z = 20)"(w = 2){In(w - 2} D), _, (3.40)
F(_a' + Q) — *
= TG)D;—ZZ (z = 20)"{In(w — 2)}f(2) .
which can be used as an analytic continuation for the left-hand side except for the case ¢ — @ = 0,—1,-2, ... with

a#0,1,2,.... Fora = 0,+1,+2,+3,. .., the representation is valid if a — g # 0, 1,2, ..., we will use (3.40) as an

26



Tremblay / Montes Taurus J. Pure Appl. Math. 3 (1), 7-37, 2021

analytic continuation. If both @ and g — @ positive integers or zero then

Dg,zo{(z = z)’w —2)7In(w — ) f (Z)}| = 0. Finally, we can show that function

W=z

@ {(z -z0)’ (w—2z)?

Tl + p) (g — a)'*? (In(w - 2))°f (Z)}'

*
Ww=Z
is an entire function of p and g — «.

3.4. Pochhammer integral representation of
DY (z = 20)"(w — 2)?{In(z — z0)}°{In(w — Z)}ef(Z)EV:Z

Now consider the general case obtained from (3.4) with both 6 # 0 and 6 # 0. Again, in (3.4), if we leta — z,
with R(p) > —1 (see Fig. 4), integrals over C[a, z§] vanish and we can write

| P& 20:2) dé (341)
Clz0,2%; F5,0(203 203 2)s F,6(203 293 2) €200 (14270 In(z-20)) ]

2mide™ir

1
= mLF&G(f;ZO;Z)d§+ m

f Fo,0(¢; 205 2) dé.
Clz0,2%; Fo,0(z0; 205 2), Fo,0(z03 205 2) €@ (14276 In(z-20)) |

Now we can deform the contour of integration C[z,, z*] into C; U C U C3 as shown in Fig. 3. The contour C; is a
straight line segment from z; to almost z, C; is a small circle centered at £ = z, C3 is C| traversed in opposite direction.
With the additional ‘half-plane’ restriction R(a —g) < 0, the integral over C, approaches zero as the radius of contour
tends to zero. Again we must make sure that the correct branches of function (z — £)?"%~! and In(z — &) are used. In
accordance with Conventions and Notations 3.1, the left-hand side of (3.41) can be written in the following form

f Faol:20:2) dé (3.42)
Clz0.2": Fi,6(z0: 73 2): Fo.0(z0: 23 2) €7@ (1427i6/ In(z-20)) |

= f FENE - 20 - 7 In(E - )P linGe - £))'de
- [ f FENE - ) — £ (In(E — 2)PlinGe — O)de
+27i6 f FEE - ) — O (InGE - )P d
= (1 - ™) f ENE - 20 (@ - 7 In(E - )P lin(e - £))'de
— 2mife™ 4~ f " FEE - 20— £ (In(E — ).

From the Riemann-Liouville representation (1.1), we can identify the fractional derivatives term on the left-hand side
of (3.42). Thus we have

| Faol€: 201 dE (3.43)
Clz0.2* :F56(20320:2):F 5,0(2 32 :2)e¥ =0 (14+27i6 In(z—a))]

— (1 _ leri(q—oz))
T(-a)DL, f(@)(z — 20)" (W — 2)*{In(z = 20)}’{In(w — )}’ _.
— 27T (—@)e™™ ™ DY, f(2)(z =~ 20)P(w = Iz = 20))°] __.
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We now return to (3.41) with (3.42) and we can write
(1 = NI (=)D, f(2)(z — 20)" (W = 2)%{In(z = 20)}{In(w — )}’ __ (3.44)

— 27if T(~a)e™™ " DY f(2)(z — 20)"(w — 2){In(z — 20)°| _.

1
T (1 = e2in) LFa,e(f; 205 2)d€

2riseir - o ) .
(e | (1 = T IMEDL, [ = 20) O = InGw = )
— 210 T(~a)e™ D2 f(2)(z - 20)"(w - 27, _ |
which can be rewritten in the following form
DY (z - 20)" (w = 2)'{In(z — 20)}*{In(w — 2} f(2)|, (3.45)

=20 w=z

_ M IT(L + @) { e ™4 sin aﬂ}

4rsinmp sin(@ — ¢)m

fp FEE =200 (2= T I - 20){In(z - &)Y dé

in(g—a)
- T pe a2 (v - 9lInG - )P FQ|
Slll(q - a)ﬂ w=z
I e F@)z - 20) 0w = {InGw — DI FQ_
sinzp

71'2 6geiﬂ(p+q—a)

+ DY@ 2)"w =2 f@)| .
sinztp sin(a — ¢)m e (@~ 20/ W =2 w=g

If we use the new Pochhammer integrals representations (3.23), (3.39) and (3.9) in (3.45), we obtain the next full
Pochhammer representation for the general case of the fractional derivative.

3.4.1. Pochhammer integral representation of
DY, (z = 20)"(w — 2){In(z — 20)}’ {In(w — 2’ (D) _.

With the adopted Conventions and Notations 3.1 we have for p, both @ and @ — ¢ are not integers z € R — {zo}

DY f(@)(z = 20)"(w — 2)*{In(z — 20)}*{In(w — Z)}6|;=z (340
_ ™ DI(] 1 @) e sinan
- 4xsinmp sin(a@ — g)r

fP FEE =202 =T HInE = 20))’{In(z - &))'d¢

ne~imp
0 — P  — g-a—1 1 _ (5d
T ey sinzp sinda — g fpf @ = 20"z =T HIn(€ - 20))°dé
iy e~ 7q-a) ff(f)(‘f_ Y(z _ég)q—a—l{ln( —f)}gdf
4T(~a) sin® np sin(a — g)m Jp f)ie T = &)y dd
2
— 06 — 720)P(z — &)1 1g
4T(~a) sin? p sin(ar — on f}:f(f)(f 20)/(z2—=&) &

where the symbol (*) indicates that w is in the neighborhood of the point £ = z. The point w is inside the loop C(a, z*)
(see Fig .2) which merges with the singular point z when w — z in the right hand integral of (3.46). Restrictions and
extensions of (3.47) are the same as the ones in equation (3.46). For each choice 6 = 0/1, § = 0/1, we find the set of
previous representations of the fractional operator.
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3.4.2. Extension of the Pochhammer integral representation to D;’(Z)

For the derivative of order @ with respect to an arbitrary function g(z), we have

D, f@I8(@)" — gw)1{In[g@1{In[g(w) — g’ __ G40
~ em@PtDI(] + @) { €™ sin om}
- 4xsinmp sin(@ — )

fp FOIgOPlg(z) — g1 HIn[g()¥{In[g(z) — g1 g(O)dL

ﬂ.e—inp

p _ q-a-1 1 Fl d
+94F(—a) sinzp sin’(a — q)r fp FOIWDI[g(2) — gl {In[g(O)°g(O)d¢

T e—in(q—(t)

AT(—a) sin® 7p sin(e — g)m
fp FOIgON [8(2) — (D17 * {In[g(z) — &1} g()dL

71,2

- 66 fp FOIEDIPg(z) — g1 g(O)d¢

4T(~a) sin® np sin?(a — qQr

obtained by a simple change of variables & = g({) in (3.46) with zo = 0, and after replacing f[g({)] by f({). The
Pochhammer contour P is plotted with respect to the point g~!(0) and z. Once again, if both @ and ¢ are integers, the
e M sin a

factor (—)ﬂ will be replaced by 1. The singularities at p = 0, 1,2, ..., M (an arbitrary positive number) can be
sin(a — ¢)r
removed. Except forg —a =0,-1,-2,...,witha # 0, 1,2,..., we will use the analytic continuation

D {(z = 20w = 2){In(z = 20))(1n(w = DY ()| (3.48)
_T(-a+q)

T I(-a)

%
w=z

DI0(z ~ 20)"{In(e ~ 20))°lIn(w - 2))' Q)|

*
w=z

Moreover, we can show that the function

Q {(z—ZO)” (w—2)7

e F (T )7 Tq a1 ~ 2001 flnGo - f@)|

,
W=z
is an entire function of p and g — «.

4. A transformation formula for fractional derivatives.

In this section, we deduce a transformation formula obtained by noticing the symmetry with respect to the pair
of parameters @ + 1 and p and the pairs of functions {(¢ — zg), In(¢ — z9)} and {(z — &), In(z — &)} which appear in the
integrand of Pochhammer integral representations, and the four-loop contour drawn around the branch points zy and
Z.

Theorem 4.1. Let f(z — z9, w — z) be an analytic function on a simply connected open set R containing the points
zo and w. Also assume that f(0, w — z9) # 0 and f(z — z9, 0) # 0. If p, @, @ — ¢ and p + r are not integers and
z € R — {70}, then the transformation formula

D, { £z = 20, w = 2)(z = 20" (w = HInz = 20))°{InCw = )| @.1)

_T(1+p)
T I(-a)

DM fw =2, 2= 20}z = 200" (w = 2){In(z — 20)}*{In(w — z)}‘s}‘

*

w=zZ
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is valid for z € R — {zo} where 6, 6 = O or 1.
Proof: From equation (3.46), if we put

L= D, As o, perg(z—20; Ww—2) (4.2)

= Dg—m{f(z — 20, w = 2)(z — 20)""" (W — 2)!{In(z — 20)}’{In(w — z)}g} :

w=z’

we have

I=

==+ (1 4 @) { e~ gin aﬂ}

drsinn(p +r) (4.3)

sin(a — ¢)&

j;f(-f—za,z—f) Eso(p+r,g—a—1;&—zy, z—EdE

n.e—in(p+r)

0
AT (—) sinn(p + r) sin(a@ — ¢)n
ff(rf—ZO, 2=8 Esolp+rg-—a—1;& -z, 2—dE
P

T e—m(q—(t)

AI'(—a) sin’ n(p +r) sin(a — g)«
ff(f—m, 2=& Eog(p+rg—a—1;&—2z0, z—EdE
P

2

0
AT(~a) sin® 7(p + r) sin*(a — qQr
ff(f—ZO, =8 Boolp+rg—a—1;& -z, z—8d§
P
where

Esolp+rg-—a—-1,6—-z20,2-8) (4.4)
= (€ = 200" (2= O HIn - 20))°{In(z - ).

The Pochhammer contour is a four loop contour in the complex plane and is given by P = C; U C, U C3 U Cy.
The Fig. 2.1 shows the components of P. Note that we can always choose C3 = —C; and C4 = —C, which yields
P =CiUC,U(-Cy) U (—C,), where the minus signs indicate that contours are crossing in the opposite direction with
a arbitrary in R; also the values of integrals in (4.3) remain unchanged. Now, with the substitution & = z + z9 — { in
(4.3), being in the £-plane, the variable of integration £ starts at £ = a, encloses & = z once in the positive sense, and
returns to & = z + zp — a, the variable of integration ¢ in the {-plane starts at { = z + z9 — a, encloses { = zp once in
the positive sense, and returns to { = z + z9 — a. In other words, the new contour in the complex plane ¢ which is the
image of C| is equivalent to C, in the &-plane except for the starting point which is { = z + zp — a instead of ¢ = a.
Similarly, with the same substitution § = z + z, — ¢ in (4.3), the image of C», of the {-plane is equivalent to C;
in the &-plane except again for the starting point which is { = z + zo — a instead of ¢ = a. Globally the image of the
Pochhammer contour P = C; UC, UC3 UCy of the é-plane in the {-plan is equivalent to P = Co,UC; U(—Cr)U(-Cy) =
—{C, UC, U —(C) U (—Cy) which is —P except again the starting point which is { = 7+ zyp — a instead of ¢ = a. Using
the fact that Z5 g(p+7, g—a—1; E—z20,2—&) = Es0(q—a—1, p+r; 27—, { —20) with & = z+ 79 — £, this substitution
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in (4.3) gives

I=

@ r+DT(1 + @) { e~ sin om}

4drsina(p +r) .5)

sin(a — ¢)«

j;f(z—tf, {—20)Egs(g—a—1, p+r,z—0, {—z20)(-dl)

ﬂ.e—in(p+r)

+0
AT (~) sin(p + r) sin®(a — qQr
ﬁf(z_é” 4—10)50,6(4—0— 1’P+V§Z_§v {_ZO)(_dg)

7 e inlg-a)

AT(~a) sin’ 7(p + r) sin(a — g)
fPf(z -4 {-20)Epolg—a-1, p+riz—4, —20)(-d)

2

0
AT(~a) sin? 7(p + r)sin® (@ — g)m
fpf(z—é’, {—20)E00(g—a—1,p+r; 2=, {—z0)(=d)).

If we replace P in the {-plan by —P in the &-plane with the starting point ¢ = z+ 79 — a instead of & = a, and if we take
I'(1 + p)/T'(—a) as a factor, after elementary calculations we can rewrite (4.5) in the following form

_ T(1 + p)pemi-t=ri-la=ar It D] 4 [-1 — p]) (e sin(—1 — p)x
I= [(—a) [ 4rsinm(q — a) { sin(-1 — p — ) } (4.6)
ff(z_f’ 5—20)59,6(6]—01_ l’ p+r; Z_‘f’ §_ZO)df
P
ﬂ.e—irr(q—a— 1)
+0
AT(~[~1 - p])sinn(g — @ — 1) sin®*([-1 = p] — )7
ff(z—rf, E-2008p0(g—a—1,p+r;z—§ &—20)dé
P
DA+ [=1 = pe =P o7 sin(—1 —p)ﬂ'}
4sin’n(g—a — 1) sin(-1 - p—-nrm
fpf(z—f, E-z20)B0s(q—a—1,p+r,z-& &—z0)dé
7T2
AT(-[-1 - pD)sin® (g — @ — D) sin®(=1 — p— Pz
ff(z—f, E-20)Z00(g—a—1, p+riz-§& &= 2)dé]|
P
Identifying the right-hand side of (4.6) with (4.4) and (3.46), we obtain
_T(+p)
1= Ca) 4.7

D fw =z, 2= 20z — 20 (w = )" {In(z — z)){InGw - P || _.

The conditions of parameters in (4.1) are the same as the ones given in (3.46). The Theorem is proved. With the
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change of variable £ — zp = g({), we get the generalized version of the formula to the operator DY)

D?@{f(z, g gw) = g@D [ [gw) - g1 (4.8)
{In[g(2)])*{In[g(w) = g(z)]}"} )
ra e
= ﬁ(faﬁ’ ) D ‘{f[g-1 [gw) - g@)], 2] [g@1 ' [gw) — g’

*

{In[g(2)]}"{In[g(w) - g(Z)]}‘s}

W=z

Now we will examine possible extensions of formula (4.1) with respect to the set of parameters a, p, ¢, r, 6 and 6.
If we use the analytic continuation formula (3.48) on both sides of the transformation formula (4.1), replacing a by
a + g and p by p — r, we can write

(z—2z20)

I'(l+p)

(z—20) "
I'(-a)

DY (fz-z20. w=2) {In(z = z0)}° {In(w — 2))’}| 4.9)

*
w=z

—1 ®

=D fw -2 2-2) {In(z - 20)}’{In(w — )1’}

w=z
which is symmetric with respect to @ and —1 — p. We can obtain directly (4.9) from (4.1) by putting ¢ = r = 0. Note
that we can also obtain (4.9) with the analytic continuation formula (3.48) on both sides of the transformation formula
(4.1). We must pay special attention when —a and 1 + p are negative integers in (4.9), taking into account the fact that
Zo and z are branch-points of logarithm functions. Also, we cannot simultaneously have § = 8 = 1. Moreover, we can
give an interpretation of the left-hand side of (4.9) when p = -1, -2, -3, ... and ¢ = 0 by the right-hand side of (4.9)
ifa#0,1,2,... Inversely, the right-hand side of (4.9) can be defined with @ =0, 1, 2, ... and 6 = 0 by using the
left-hand side of (4.9)if p # -1,-2,-3,....

Each side of (4.9) can be seen as a convolution integral operator of appropriate functions. Note that it is possible to

make a link between the complex function (Z}‘"('“_);;_] and the distribution function I7* = ff(::) [38, p. 145-160] which
gives as a particular case I = §"(x), 6(z) being the Dirac distribution function. In the next section we will give
some applications of the new transformation (4.1) and (4.8) with the new Pochhammer representations for fractional

derivatives of singular functions proposed in section 3.

5. Some applications

Transformations (4.1) and (4.8) can be applied in many subjects and formulas involving fractional derivatives. For
example, if we use the transformation formula (4.8) with 6 = 6 = 0 and g(z) = 1 — z, from (2.15), we obtain

*

Td+a+n)(1-2)

P(Q»ﬁ) — D*Q*ﬁ*"*I 1= —p-n—1 2 o\ 51
N T T M (M (5.
which eventually gives the following for the Jacobi polynomial [35, Eq. (2), p. 254]:
(@, B) _(1+Cl)n 14+2z\n —n,—ﬁ—n z—1
PP = —— (—2 ) O (5.2)

In this section we examine two particular applications: the Leibniz rule and the Christoffel-Darboux formula (1.9).
For the first, we can find many papers in the literature treating the Leibniz rule and its generalizations in the form of
an infinite series and an integral analogue [26, 28, 30, 31]. We will limit our example to the now-classic series form
(5.3)(see [26, Eq.(1.1), p.658]. We recall that the proof of (5.3) without using the Pochhammer representations for
fractional derivatives requires the following three ‘half-plane’ restrictions R(P+Q) > —1, R(P) > —1 and R(Q) > -1
even if only the first one is necessary. In [20], it is shown how the introduction of the Pochhammer representation can
improve the Leibniz rule as an infinite series (5.3) (or as an integral analogue version) given in ([26, Th.1, p.664)],[30,
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Th.4.1, p.907]). In this section, we show how the Pochhammer representation with its symmetric properties with
respect of the parameters and variables can allow the use of the transformation (4.1) to obtain new forms of the
Leibniz rule.

For the second application, it is the first time that we use the fractional derivative and the Christoffel-Darboux
formula (1.9) together in an application. Recall that the Christoffel-Darboux formula involves the set of orthogonal
polynomials {f,(x)}”;} on the interval [a, b] for the weight function w(x). The transformation formula (4.1) with
0 = 0 = 0and zp = 0 applied on the Christoffel-Darboux formula slightly modified allows us to deduce many
summation formulas involving the classical orthogonal polynomials and other special functions.

5.1. The Leibniz Rule.
If we use the transformation formula (4.1) with 6 = 6 = 0 in the well-known Leibniz rule [26]

DI, (z— 20} u(z)v(z) (5.3)

=20
(<)

a a—y—an +an v
=a) (Y . an)D“ﬁ (2 = 20)'u(z) - D5 (2 = 20)v(@)

—00

(with 0 < a < 1), we obtain after elementary substitutions the following new form of the Leibniz rule

0

- —a-l
o (S e -, )

—00

pil {(Z — zg) ¥tyFan-l u(z)} . p-l {(Z — o)yt v(z)} '

TR T(-a+y+an) o I'(—y —an)

If a — 0in (5.4), we obtain the interesting integral analogue

M+V —pu—v—1 (Z - ZO)_a_l _ foo a

( U )Dz—zo { ) u(z)v(z)} - v+ 5.5
-1 [ (- zo) wtrre-l —— z0) Yo !

D~ {—F(—a Tyt u(z)} D {—F(—y ~ v(z) ¢ dw.

If R (a simply connected region where z, is an interior point) is the region of analyticity of f(z), Osler ([26, 30]) showed
that formula (5.3) is valid inside the region 8 C R defined by the set of all z such that the closed disk |¢ — z| < |z - Zo|
contains only points £ in R. Recalling that formula (4.1) is obtained by the change of variable & = z + z, — {, we
see that the image of N becomes the set of all z such that the closed disk |{ - z0| < |z - z0| contains only points £ in
R. Therefore we have N = R (the region of convergence of (5.3)and (5.4)), a, ¥, u and v are all complex numbers
except for @ which is a negative integer and R(u + v) > —1. In addition to eliminating the restrictions R(u) > —1 and
R(v) > —1 initially imposed on (5.3), the Pochhammer representation for the fractional derivative presents another
important advantage, that of allowing the function f(z) to have an essential singularity at zo. Moreover, due to the use
of a Pochhammer contour, we can show that the singularities —& +y+an =0,-1,-2,...and -y —an =0,-1,-2,...
are apparent.

We conclude this application by assigning specific values to u(z), v(z), @, v, ¢t and v in (5.4). For example, putting
7o =0,u(z) = (1 - D4 v =1l,a=B,u=B-D,v=C+D, replacing y by v + D, in computing the fractional
derivatives in (5.4), and using the fact that the gaussian function can be written in terms of fractional derivatives like
the following ([9],Vo0l.2,p.191-212),

a,b L'(¢) 1—c yp-cb-1 -
F =—=7 ‘D¢ 1-27¢ 5.6
2 1[ c z] F(b)z ;T (1-2) (5.6)
we obtain
B+C A+E,-B " B C
,F z]:az (5.7)
D+C 1+C S \D+y+an)\C -y —an
A D-B+y+an E,-D—-vy—an
2Fy Z] 2F z
l+y+an 1+C—-vy—-an
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If A = E =0in (4.9), we obtain the well-known Dougall formula ([8], vol. 1, Eq. (1), p. 7). Let us note that we can
find other forms of the Leibniz rule in [10] where the transformation formula (4.1) could be applied.

5.2. The Christoffel-Darboux Formula.

Before using the transformation (4.1), we first modify the Christoffel-Darboux formula (1.9). Replacing x by w, y
by z and putting z, = 0, multiplying both sides by z”(w — z)7, we obtain

1 [0 @) K fost 0P Sa@) = oW a1 ()

= 5.8
m=0 hy  (w=2)71 kni1hn (w—z)a*! (5:5)
Now applyng the operator D¢ on each side of (5.14) where w = z before the operation, we have
m(2) o k,
Z In® pe oo Dl = (5.9)
=0 n+1 n
[fn+1<z>D§zP<w ~9" Q| - A@DIw =" fra )]
w=z w=z
Now using (3.13) and the transformation formula (4.1) with 6 = 8 = 0 and zg, we get
r + 1) o
D“ZP(W 2)9” 1fn(Z)| MDZ q+lprn(Z) (5.10)
F(—a)
_Td+p) D" 1_—a+g-2
T T(-a) S =), wez
(1 +p) f(")(z) Kyl ke
- 1 D a+qg+
e Z DDz
_ I(l+pI(-a+q- I)Z—a+p+q—1 n f’gk)(z) (—a+qg- 1) —Z)k
I'-ao)l'(-a+p+q) o K (—a+p+tqn .
Using (5.10) in (5.9) and simplifying we can write
-1 m m -
(ca+q-1) f(z)Zf @ (ot San)
(= a+p+q) B k! (ma+p+q+ 1

(k) 1
[fn+1( )Zf" @araDe

n+]h k! ( 01+P+‘1)k

n+l (k)

n+1(Z) (—G,’ +q— 1)k k
RO T Cavpra P

The first term (k = 0) on the right-hand side of (5.11) equals zero. After sliding the index of summation, and putting
a=a+q,b=—-a+p+qg+1,if we define the associated polynomial w,(a; b; z) of the orthogonal polynomial f,(z)
by

& 00 (an

. k
wn(a; b; z) = S kT D! B ——(=2), (5.12)
we obtain from (5.11) the following summation formula
n 2 n
Zf'}”l(z)—%ZfZ(Z)wn(a+1;b+l;z) (5.13)

k,
=7 I ———[fir1@wn(a; b; 2) — fu(Dwpy1(a; b; 2)]
n+1
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where {/,(2)},7, is a system of orthogonal polynomials on the interval [a, b] for the weight function w(x). Recall that
we have by definition,

b
hy = f w@) ()P dxand f,(x) = kyx" + kX" 4L

The special case a = 0 in (5.13) gives the well-known formula [8, Vol. 2,Eq. (11), p. 159],

f";liz) = m[fml(Z)fn(Z) = @ far1(@)]. (5.14)

m=0

As an example, if we consider the Jacobi polynomials P(,f’ﬁ )(z), then [1, Tables 22.2 and 22.3, p. 774-775],

2T+ e+l + B +n) 1 (2n+a+p
" Qn+a+B+nTd+a+B+n) " 2n ’

n

and with some calculations we get the following explicit summation formula

-m,l+a+B+m|l -z
l+a,1+b 2

Z(2m+a+,3+1)(1+a/+ﬂ)m (5.15)
m=0

(I+Bm
_ 2b(1+a+B)2+ a+pB),
T (U =-2)(b-a)2+a+B+2n)1+pB),

PS;“ﬁ)(z)an[

-n—-1,24+a+B+na
1+a,b
]

By the same technique, it is possible to deduce similar summation formulas for the other classical orthogonal polyno-
mials.

Furthermore, this can be used as an efficient tool to obtain new associated forms of the known generalized Leibniz
rules for the fractional derivatives. There are many other potential areas where the new Pochhammer integral represen-
tations and transformation formulas can be used to obtain new extensions of results involving fractional derivatives.
Among them, we can examine, a generalized Taylor series, the chain rule, the derivative of composite a function, and
SO on.

(A +a+n)PYP ) 3F2[

-n,1+a+B+n,a

n+l l+a,b

~ (1 +m)P"P(z) 3F2[

6. Conclusion.

In this paper, we show that Pochhammer contours are efficient tools for representing the fractional derivative of
analytic functions (exponential, trigonometric and hyperbolic functions, etc.) and functions with a single branch-point
(complex powers, logarithmic functions, and their products). These representations of increasing complexity are pre-
sumably new. They are obtained progressively to finally obtain the most general definition (3.47) of the fractional
derivative that is known in the literature, that of the product of an analytic function (or having an essential singularity
at 7o) and four other functions with a branch-point (two complex powers and two logarithmic functions). From this
new representation, we have been able to deduce a generalization of an important transformation formula for the frac-
tional derivative already published in [49]. In addition, the examples presented in sections 2 and 5 definitely show the
usefulness of these new representations for discovering new formulas involving classical functions of mathematical
physics, particularly a new form of the Leibniz formula for the fractional derivative of a product of functions. Our last
application makes it possible to obtain new summation formulas arising from the classical Christoffel-Darboux for-
mula associated with orthogonal polynomials. This article clearly shows that these new transformations are powerful
tools to investigate and obtain new results. These new representations, combined with other rules involving fractional
derivatives, will be studied in the future.
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