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Abstract

In this paper we introduce new energy of graph that is Euclidean degree energy. We obtain characteristic polynomial of the Eu-
clidean degree of standard graphs and graphs obtained by some graph operations and also we characterize Euclidean hyperenergetic,
nonhyperenergetic and borderenergetic graphs.
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1. Introduction

A graph G is a finite nonempty set of points called vertices, together with a set of unordered pairs of distinct
vertices called edges. Let V(G) be the vertex set and E(G) be an edge set of G. The set of edges may be empty. The
degree of a vertex u, du(G), is the number of edges incident on u. A graph is a regular graph if all the vertices of the
graph have equal degrees. A graph is considered a complete graph if each pair of vertices is joined by an edge. For
more basic terminologies and notations we referred [12]. Let A(G) = (ai j) be an adjacency matrix of order n of a graph
G. The characteristic polynomial of a graph G is denoted by Ch(A(G), λ) =| λI − A(G) |, where λ is an eigenvalue of
a graph G. Hence, by [10], the energy of G is defined as E(G) =

∑n
i=1 | λi | .

Bapat and Pati [2] have proved that if the energy of a graph is rational then it must be an even integer and Pirzada
and Gutman [16] showed that the energy of a graph is never the square root of an odd integer. Initially, the concept
of energy in a graph arose from Huckel theory in which the π-electron energy of a conjugated carbon molecule was
computed, which coincides with the energy of a graph. The Euclidean degree square sum matrix of a graph G is
denoted by EDE(G) = (si j) and whose elements are defined as

si j =


√

d2
i + d2

j if vi ∼ v j

0 if otherwise
.
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2. Some basic properties of largest Euclidean degree eigenvalue

Let us define number p as
p =

∑
i< j

(d2
i + d2

j )

Proposition 2.1. The first three coefficient of the polynomial Ch(EDE(G, λ)) are as follows

(i) a0 = 1

(ii) a1 = 0

(iii) a2 = −p

Proof. (i) By the definition of characteristic polynomial we get, a0 = 1

(ii) Sum of all principal diagonal entries of Euclidean degree matrix is equal to the trace of EDE(G). Thus,

a1 = tr(EDE(G)) = 0

(iii) We have ,

(−1)2a2 =
∑

1≤i< j≤n

∣∣∣∣∣∣aii ai j

a ji a j j

∣∣∣∣∣∣
=

∑
1≤i< j≤n

(aiia j j − a jiai j)

= −p

Proposition 2.2. If λ1, λ2 ,..., λn are the Euclidean degree eigenvalues of EDE(G) then,

n∑
i=1

λ2
i = 2p

Proof.
n∑

i=1

λ2
i =

n∑
i=1

n∑
j=1

ai ja ji

= 2
∑
i< j

(ai j)2 +

n∑
i=1

(aii)2

=
∑
i< j

(ai j)2

= 2p

Theorem 2.3 ([15]). Let ai and bi be non-negative real numbers, then

n∑
i=1

a2
i

n∑
i=1

b2
i −

 n∑
i=1

aibi

2

≤
n2

4
(M1M2 − m1m2)2 (2.1)

where, M1 = max(ai) , M2 = max(bi),m1 = min(ai) , m2 = min(bi) where i = 1, 2, ..., n
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Theorem 2.4 ([? ]). Let ai and bi be non-negative real numbers, then∣∣∣∣∣∣∣n
n∑

i=1

aibi −

n∑
i=1

ai

n∑
i=1

bi

∣∣∣∣∣∣∣ ≤ α(n)(A − a)(B − b) (2.2)

where a, b, A and B are real constants such that a ≤ ai ≤ A and b ≤ bi ≤ B for each i, 1 ≤ i ≤ n. Further,
α(n) = nb n

2 c(1 −
1
n b

n
2 c).

Theorem 2.5 ([8]). Let ai and bi be non-negative real numbers, then

n∑
i=1

b2
i + C1C2

n∑
i=1

a2
i ≤ (C1 + C2)

n∑
i=1

aibi (2.3)

where C1 and C2 are real constants such that C1ai ≤ bi ≤ C2ai for each i, 1 ≤ i ≤ n.

Theorem 2.6. Let G be an r-regular graph of order n. Then G has only one positive Euclidean degree eigenvalue
λ =
√

2r(n − 1).

Proof. Let G be a connected r-regular graph of order n and {v1, v2, ...., vn} be the vertex set of G. Let di = r be the
degree of vi, i = 1, 2, ...n. Then the characteristic polynomial of EDE(G)

Ch[EDE(G), λ] = (λ −
√

2r(n − 1))(λ +
√

2r)n−1 (2.4)

Therefore, the eigenvalues are
√

2r(n − 1) and −
√

2r which repeats (n − 1) times.

Theorem 2.7. Let G be any graph of order n and λ1 be the largest Euclidean degree eigenvalue. Then

λ1 ≤

√
2p(n − 1)

n

Proof. By the Cauchy-Schwartz inequality [[? ]] we have n∑
i=1

aibi

2

≤

n∑
i=1

a2
i

n∑
i=1

b2
i

where ai and bi are non-negative real numbers.
now, substituting ai = 1 and bi = λi ,we have  n∑

i=2

λ2
i

2

≤ (n − 1)
n∑

i=2

λ2
i

By using propositions 2.1 and 2.2 in above inequality

(−λ1)2 ≤ (n − 1)(2p − λ2
1)

Hence,

λ1 ≤

√
2p(n − 1)

n
Remark 2.8. If G is an regular graph then

λ1 =

√
2p(n − 1)

n
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Remark 2.9. Let G be an r-regular graph of order n , then EDE(G) = r2J − r2I. Where J is the the matrix of order n
whose all entries are equal to one and I is an identity matrix of order n.
The characteristic polynomial is given by

Ch[EDE(G), λ] = (λ −
√

2r(n − 1))(λ +
√

2r)n−1

Hence ,
E[EDE(G)] = 2

√
2r(n − 1) (2.5)

Remark 2.10. If G is an r-regular graph , its complement G is (n − 1 − r) regular graph then we have,

Ch[EDE(G), λ] = (λ −
√

2(n − 1)(n − 1 − r))(λ +
√

2(n − 1 − r))n−1

Thus ,
E[EDE(G)] = 2

√
2(n − 1 − r)(n − 1) (2.6)

Theorem 2.11. Let G be an graph of order n and size m. Then

E[EDE(G)] ≥

√
2np −

n2

4
(| λ1 | − | λ2 |)2

Proof. Let λ1, λ2, ..., λn be the eigenvalues of EDE(G). Substituting ai = 1 and bi =| λi | in the equation (1) We get

n∑
i=1

12
n∑

i=1

| λi |
2 −

 n∑
i=1

| λi |
2

2

≤
n2

4
(| λ1 | − | λn |)2

2pn − (E[EDE(G)])2 ≤
n2

4
(| λ1 | − | λn |)2

E[EDE(G)] ≥

√
2np −

n2

4
(| λ1 | − | λn |)2

Corollary 2.12. If G is an r-regular graph of order n, then

E[EDE(G)] ≥ nr2
√

8(n − 1) − n2

Theorem 2.13. Let G be an graph of order n, then√
2p ≤ E[EDE(G)] ≤

√
2np

Proof. By the Cauchy-Schwartz inequality [[? ]] we have n∑
i=1

aibi

2

≤

n∑
i=1

a2
i

n∑
i=1

b2
i

where ai and bi are non-negative real numbers.
Now, substituting ai = 1 and bi = λi we have n∑

i=1

| λi |

2

≤

n∑
i=1

12
n∑

i=1

| λi |
2

(E[EDE(G)])2 ≤ 2pn
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Thus,
E[EDE(G)] ≤

√
2pn

and
n∑

i=1

| λi |
2≤

 n∑
i=1

| λi |

2

2p ≤ (E[EDE(G)])2

which implies
E[EDE(G)] ≥

√
2p

Theorem 2.14. Let G be a graph of order n and ∆ be the absolute value of the determinant of EDE(G). Then√
2p + n(n − 1)∆

2
n ≤ E[EDE(G)] ≤

√
2np

Proof.

(E[EDE(G)])2 =

 n∑
i=1

| λi |

2

=

n∑
i=1

λ2
i + 2

∑
i< j

| λi || λ j |

= 2p + 2
∑
i< j

| λi || λ j |

(E[EDE(G)])2 = 2p +
∑
i, j

| λi || λ j | (2.7)

Since we know for non-negative numbers , the arithmetic mean is always greater than or equal to the geometric mean

1
n(n − 1)

∑
i, j

| λi || λ j |≥

∏
i, j

| λi || λ j |


1

n(n−1)

=

∏
i=1

| λi |
2(n−1)


1

n(n−1)

=
∏
i, j

| λi |
2
n

= ∆
2
n

Therefore, ∑
i, j

| λi || λ j |≥ n(n − 1)∆
2
n

from equation (7) we have,

E[EDE(G)] ≥
√

2p + n(n − 1)∆
2
n

Consider a non-negative quantity

Y =

n∑
i=1

n∑
j=1

(| λi | − | λ j |)2 =

n∑
i=1

n∑
j=1

(| λi |
2 + | λ j |

2 −2 | λi || λ j |)
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Y = n
n∑

i=1

| λi |
2 +n

n∑
j=1

| λ j |
2 −2

n∑
i=1

| λi |

n∑
j=1

| λ j |

Y = 4np − 2(E[EDE(G)])2

since
Y ≥ 0

4np − 2(E[EDE(G)])2 ≥ 0

E[EDE(G)] ≤
√

2np

Corollary 2.15. If G is an r-regular graph of order n, then

E[EDE(G)] ≤ 2nr2
√

n − 1

Theorem 2.16. Let G be a graph of order n and size m. Let λ1 ≥ λ2 ≥ ... ≥ λn be a non-increasing arrangement
Euclidean degree eigenvalues. Then

E[EDE(G)] ≥
√

2np − α(n)(| λ1 | − | λn |)2

where α(n) = nb n
2 c(1 −

1
n b

n
2 c).

Proof. Let λ1, λ2, ..., λn are the Euclidean degree eigenvalues of G. Substituting ai =| λi |= bi and a =| λn |= b,
A =| λ1 |= B in the equation (2) ∣∣∣∣∣∣∣n

n∑
i=1

| λi |
2 −

 n∑
i=1

| λi |

2∣∣∣∣∣∣∣ ≤ α(n)(| λ1 | − | λn |)2

Since E[EDE(G)] =
∑n

i=1 | λi | and
∑n

i=1 | λi |
2= 2p we get the required result.

Theorem 2.17. Let G be a graph of order n and size m. Let λ1 ≥ λ2 ≥ ... ≥ λn be a non-increasing arrangement of
Euclidean degree eigenvalues. Then

E[EDE(G)] ≥
| λ1 || λn | n + 2p
| λ1 | + | λn |

where | λ1 | and | λ2 | are maximum and minimum of the absolute value of λ′i s

Proof. Let λ1, λ2, ..., λn be Euclidean degree eigenvalues of G. Substituting ai = 1 and bi =| λi |, C1 =| λn |, C2 =| λ1 |

in the equation (3)
n∑

i=1

| λi |
2 + | λ1 || λn |

n∑
i=1

12 ≤ (| λ1 | + | λn |)

 n∑
i=1

| λi |


Since E[EDE(G)] =

∑n
i=1 | λi | and

∑n
i=1 | λi |

2= 2p we get the required result.

Definition 2.18. [12] The line graph L(G) of a graph G is a graph with vertex set as the edge set of G and two vertices
of L(G) are adjacent whenever the corresponding edges in G are adjacent.

The kth iterated line graph [4, 5, 12] of G is defined as Lk(G) = L(Lk−1(G)), k = 1, 2, 3.. where L0(G) � G and
L1(G) � L(G)

Remark 2.19 ([4, 5]). The line graph L(G) of an r-regular graph of G of order n is an r1 = (2r − 2)-regular graph of
order n1 = nr

2 . Thus, Lk(G) is an rk-regular graph of order nk is given by

nk =
n
2k

k−1∏
i=1

(2ir − 2i+1 + 2) and rk = 2kr − 2k+1 + 2
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Theorem 2.20. Let G be an r-regular graph of order n and let Lk(G) be the rk-regular graph of order nk then Euclidean
degree energy of Lk(G)

E[EDE(Lk(G))] = 2
√

2rk(n − 1) where, rk = 2kr − 2k+1 + 2

Proof. The Euclidean degree characteristic polynomial of Lk(G) with vertex set nk ( see remarks 2.9 and 2.18) is
given by

Ch[EDE(Lk(G)), λ] = [λ −
√

2(2kr − 2k+1 + 2)(nk − 1)][λ +
√

2(2kr − 2k+1 + 2)]nk−1

Thus,
E[EDE(Lk(G))] = 2

√
2rk(nk − 1) where, rk = 2kr − 2k+1 + 2

Lemma 2.21 ([18]). If a,b,c and d are real numbers, then the determinant of the form∣∣∣∣∣∣(λ + a)In1 − aJn1 −cJn1×n2

−dJn2×n1 (λ + b)In2 − bJn2

∣∣∣∣∣∣
has the following characteristic equation,

= (λ + a)n1−1(λ + b)n2−1[(λ − (n1 − 1)a][λ − (n2 − 1)b] − n1n2cd)]

Definition 2.22 ([12]). The subdivision graph S (G) of a graph G is a graph with vertex set V(G)∪E(G) and is obtained
by inserting a new vertex of degree 2 into each edge of G.

Definition 2.23 ([19]). The semitotal line graph T1(G) of a graph G is a graph with vertex set V(G)∪E(G) where two
vertices of T1(G) are adjacent if and only if they correspond to two adjacent edges of G or one is a vertex of G and
another is an edge G incident with it in G.

Definition 2.24 ([19]). The semitotal point graph T2(G) of a graph G is a graph with vertex set V(G) ∪ E(G) where
two vertices of T2(G) are adjacent if and only if they correspond to two adjacent vertices of G or one is a vertex of G
and another is an edge G incident with it in G.

Definition 2.25 ([12]). The total graph T (G) of a graph G is the graph whose vertex set is V(G) ∪ E(G) and two
vertices of T (G) are adjacent if and only if the corresponding elements of G are either adjacent or incident.

Definition 2.26 ([18]). The graph G+k is a graph obtained from the graph G by attaching k pendant edges to each
vertex of G. If G is a graph of order n and size m, then G+k is graph of order n + nk and size m + nk.

Definition 2.27 ([12]). The union of the graphs G1 and G2 is a graph G1 ∪ G2 whose vertex set is V(G1 ∪ G2) =

V(G1) ∪ V(G2) and the edge set E(G1 ∪G2) = E(G1) ∪ E(G2).

Definition 2.28 ([12]). The join G1 + G2 of two graphs G1 and G2 is the graph obtained from G1 and G2 by joining
every vertex of G1 to all vertices of G2.

Definition 2.29 ([12]). The product G × H of two graphs G and H is defined as follows
Consider any two points u = (u1, u2) and u = (v1, v2) in V = V1 × V2. Then u and v are adjacent in G × H whenever
(u1 = v1 and u2 adjacent v2) or (u2 = v2 and u1 adjacent v1).

Definition 2.30 ([12]). The composition G[H] of two graphs G and H is defined as follows: Consider any two points
u = (u1, u2) and v = (v1, v2) in V = V1 × V2. Then u and v are adjacent in G[H] whenever [u1 adj v1 ] or [u1 = v1 and
u2 adjacent v2].

Definition 2.31 ([12]). The corona G ◦ H of graphs G and H is a graph obtained from G and H by taking one copy
of G and | V(G) | copies of H and then joining by an edge each vertex of the ith copy of H is named (H, i) with the ith

vertex of G.

Definition 2.32 ([? ]). The jump graph J(G) of a graph G is defined as a graph with vertex set as E(G) where the two
vertices of J(G) are adjacent if and only if they correspond to two nonadjacent edges of G.
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3. Characteristic polynomials of different graph structures

Theorem 3.1. Let G be an r- regular graph of order n and size m. Then,

Ch[EDE(S (G))] = (λ +
√

2r)n−1(λ + 2
√

2)
nr
2 −1[λ2 − (2

√
2(

nr
2
− 1) +

√
2r(n − 1))λ

+4r(n − 1)(
nr
2
− 1) −

n2r
2

(r2 + 4)]

Proof. The subdivision graph of an r-regular graph has two types of vertices. The n vertices with degree r and nr
2

vertices with degree 2. Hence

EDE[S (G)] =

 √2r(Jn − In)
√

(r2 + 4)Jn× nr
2√

(r2 + 4)J nr
2 ×n 2

√
2(J nr

2
− I nr

2
)

 .
Ch[EDE(S (G))] =| λI − EDE(S (G)) |

=

∣∣∣∣∣∣(λ +
√

2r)In −
√

2rJn −
√

(r2 + 4)Jn× nr
2

−
√

(r2 + 4)J nr
2 ×n (λ + 2

√
2)I nr

2
− 2
√

2J nr
2

∣∣∣∣∣∣ .
Now by using Lemma 2.21, we get the desired result.

Theorem 3.2. Let G be an r- regular graph of order n and size m. Then,

Ch[EDE(T2(G))] = (λ + 2
√

2r)n−1(λ + 2
√

2)
nr
2 −1[λ2 − 2

√
2((

nr
2
− 1) + r(n − 1))λ

+8r(n − 1)(
nr
2
− 1) − 2n2r(r2 + 1))]

Proof. The semitotal point graph of a r-regular graph has two types of vertices. The n vertices with degree 2r and nr
2

vertices with degree 2. Hence

EDE(T2) =

2
√

2r(Jn − In) 2
√

r2 + 1Jn× nr
2

2
√

r2 + 1J nr
2 ×n 2

√
2(J nr

2
− I nr

2
)

 .
Ch[EDE(T2)] =| λI − EDE(T2(G)) |∣∣∣∣∣∣(λ + 2
√

2r)In − 2
√

2rJn −2
√

r2 + 1Jn× nr
2

−2
√

r2 + 1J nr
2 ×n (λ + 2

√
2)I nr

2
− 2
√

2J nr
2

∣∣∣∣∣∣
Now by using Lemma 2.21, we get the desired result.

Theorem 3.3. Let G be an r- regular graph of order n and size m. Then,

Ch[EDE(T1)] = (λ +
√

2r)n−1(λ + 2
√

2r)
nr
2 −1[λ2 − r

√
2(2(

nr
2
− 1) + (n − 1))λ + 4r2(n − 1)(

nr
2
− 1) −

5n2r3

2
]

Proof. The semitotal line graph of an r-regular graph has two types of vertices. The n vertices with degree r and nr
2

vertices with degree 2r. Hence

EDE(T1) =

√2r(Jn − In) r
√

5Jn× nr
2

r
√

5J nr
2 ×n 2

√
2r(J nr

2
− I nr

2
)

 .
Ch[EDE(T1)] =| λI − EDE(T1(G)) |

=

∣∣∣∣∣∣(λ +
√

2r)In −
√

2rJn −r
√

5Jn× nr
2

−r
√

5J nr
2 ×n (λ + 2

√
2r)I nr

2
− 2
√

2rJ nr
2

∣∣∣∣∣∣
Now by using Lemma 2.21, we get the desired result.
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Theorem 3.4. Let G be an r- regular graph of order n and size m. Then,

Ch[EDE(T (G))] = (λ − 2
√

2r(n +
nr
2
− 1))(λ + 2

√
2r)n+ nr

2 −1

Proof. The total graph T (G) of an r-regular graph G is a regular graph of degree 2r with n + nr
2 vertices. Hence the

result follows from equation (4).

Theorem 3.5. Let G be an r- regular graph of order n and size m. Then,

Ch[EDE(G+k)] = (λ +
√

2(r + k))n−1(λ +
√

2)nk−1[λ2 − (
√

2(nk − 1) +
√

2(r + k)(n − 1))λ

+2(r + k)(n − 1)(nk − 1) − n2k(1 + (r + k)2)]

Proof. The graph G+k of an r-regular graph of degree n + nk has two types of vertices, with n vertices having degree
r + k and nk vertices having degree 1. Hence

EDE(G+k) =

 √2(r + k)(Jn − In)
√

(r + k)2 + 1)Jn×nk√
(r + k)2 + 1)Jnk×n

√
2(Jnk − Ink)

 .
Ch[EDE(G+k))] =| λI − EDE(G+k) |

=

∣∣∣∣∣∣(λ +
√

2(r + k))In −
√

2(r + k)Jn −
√

(r + k)2 + 1)Jn×nk

−
√

(r + k)2 + 1)Jnk×n (λ +
√

2)Ink −
√

2Jnk

∣∣∣∣∣∣ .
Now by using Lemma 2.21, we get the desired result.

Theorem 3.6. Let G be an r- regular graph of order n and size m. Then,

Ch[EDE(G ∪ H)] = Ch(EDE(G))Ch(EDE(H)) − (λ +
√

2r1)n1−1(λ +
√

2r2)n2−1n1n2(r2
1 + r2

2)

Proof. The graph G∪H of order n1 +n2 has two types of vertices, with n1 vertices having degree r1 and the remaining
n2 vertices having degree r2. Hence

EDE(G ∪ H) =

∣∣∣∣∣∣∣∣∣
EDE(G)

√
(r2

1 + r2
2)Jn1×n2√

(r2
1 + r2

2)Jn2×n1 EDE(H)

∣∣∣∣∣∣∣∣∣ .
=

∣∣∣∣∣∣∣∣∣
√

2r1(Jn1 − In1 )
√

(r2
1 + r2

2)Jn1×n2√
(r2

1 + r2
2)Jn2×n1

√
2r2(Jn2 − In2 )

∣∣∣∣∣∣∣∣∣ .
Ch[EDE(G ∪ H)] =| λI − EDE(G ∪ H) |

=

∣∣∣∣∣∣∣∣∣
(λ +

√
2r1)In1 −

√
2r1Jn1 −

√
(r2

1 + r2
2)Jn1×n2

−

√
(r2

1 + r2)2Jn2×n1 (λ +
√

2r2)In2 −
√

2r2Jn2

∣∣∣∣∣∣∣∣∣ .
Now by using Lemma 2.21, we get

Ch[EDE(G ∪ H)] = (λ +
√

2r1)n1−1(λ +
√

2r2)n2−1[(λ − (n1 − 1)
√

2r1)(λ − (n2 − 1)
√

2r2) − n1n2(r2
1 + r2

2)]

as G and H are regular graphs of order n1 and n2 and degree r1 and r2 respectively ,by equation (4) we have

Ch[EDE(G)] = (λ −
√

2r1(n1 − 1))(λ +
√

2r1)n1−1

and
Ch[EDE(H)] = (λ −

√
2r2(n2 − 1))(λ +

√
2r2)n2−1

Hence the result follows.
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Theorem 3.7. Let G be an r- regular graph of order n and size m. Then,

Ch[EDE(G + H)] = (λ +
√

2R1)n1−1(λ +
√

2R2)n2−1[λ2 − (
√

2R2(n2 − 1) +
√

2R1(n1 − 1))λ

+2R1R2(n1 − 1)(n2 − 1) − n1n2(R2
1 + R2

2)]

Proof. If G is an r1 - regular graph of order n1 and H is an r2-regular graph of order n2 then G + H is a graph of order
n1 + n2 has two types of vertices, the n1 vertices with degree R1 = r1 + n2 and n2 vertices with degree R2 = r2 + n1.
Hence

EDE(G + H) =

∣∣∣∣∣∣∣∣∣
√

2R1(Jn1 − In1 )
√

(R2
1 + R2

2)Jn1×n2√
(R2

1 + R2
2)Jn2×n1

√
2R2(Jn2 − In2 )

∣∣∣∣∣∣∣∣∣ .
Ch[EDE(G + H)] =| λI − EDE(G + H) |

=

∣∣∣∣∣∣∣∣∣
(λ +

√
2R1)In1 −

√
2R1Jn1 −

√
(R2

1 + R2
2)Jn1×n2

−

√
(R2

1 + R2
2)Jn2×n1 (λ +

√
2R2)In2 −

√
2R2Jn2

∣∣∣∣∣∣∣∣∣ .
Now by using Lemma 2.21, we get the desired result.

Theorem 3.8. Let G be an r1- regular graph of order n1 and H be r2 regular graph of order n2. Then,

Ch[EDE(G × H)] = (λ −
√

2(r1 + r2)(n1n2 − 1))(λ +
√

2(r1 + r2))n1n2−1

Proof. Let G be an r1- regular graph of order n1 and H be r2 regular graph of order n2. Then G × H is an (r1 + r2)-
regular graph with n1n2 vertices. Hence the result follows from equation (4) .

Theorem 3.9. Let G be an r1- regular graph of order n1 and H be r2 regular graph of order n2. Then,

Ch[EDE(G[H])] = (λ +
√

2(n2r1 + r2))n1n2−1(λ −
√

2(n2r1 + r2)(n1n2 − 1))

Proof. Let G be an r1- regular graph of order n1 and H be r2 regular graph of order n2. Then G[H] is an (n2r1 + r2)-
regular graph with n1n2 vertices. Hence the result follows from equation (4) .

Theorem 3.10. Let G be an r- regular graph of order n and size m. Then,

Ch[EDE(G ◦ H)] = (λ +
√

2R1)n1−1(λ +
√

2R2)n2−1[λ2 − (
√

2R2(n1n2 − 1) +
√

2R1(n1 − 1))λ

+2R1R2(n1 − 1)(n1n2 − 1) − n2
1n2(R2

1 + R2
2)]

Proof. If G is an r1 - regular graph of order n1 and H is an r2-regular graph of order n2 then G ◦ H is a graph of order
n1 + n1n2 has two types of vertices, the n1 vertices with degree R1 = r1 + n2 and remaining n1n2 vertices with degree
R2 = r2 + 1. Hence

EDE(G ◦ H) =


√

2R1(Jn1 − In1 )
√

(R2
1 + R2

2)Jn1×n1n2√
(R2

1 + R2
2)Jn1n2×n1

√
2R2(Jn1n2 − In1n2 )

 .
Ch[EDE(G ◦ H)] =| λI − EDE(G ◦ H) |

=

∣∣∣∣∣∣∣∣∣
(λ +

√
2R1)In1 −

√
2R1Jn1 −

√
(R2

1 + R2
2)Jn1×n1n2

−

√
(R2

1 + R2
2)Jn1n2×n1 (λ +

√
2R2)In1n2 −

√
2R2Jn1n2

∣∣∣∣∣∣∣∣∣ .
Now by using Lemma 2.21, we get the desired result.

Theorem 3.11. If Wn is a wheel graph, then

Ch[EDE(Wn)] = (λ + 3
√

2)n−2[λ2 − 3
√

2(n − 2)λ − (n − 1)(9 + (n − 1)2)]
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Proof. The graph Wn of order n has two types of vertices namely, n− 1 rim vertices are of degree 3 and central vertex
has degree n − 1. Hence,

EDE(Wn) =

 3
√

2(Jn−1 − In−1)
√

(9 + (n − 1)2)J(n−1)×1√
(9 + (n − 1)2)J1×(n−1)

√
2(n − 1)(J1 − I1)

 .
Ch[EDE(Wn)] =| λI − EDE(Wn) |

=

∣∣∣∣∣∣(λ + 3
√

2)In−1 − 3
√

2Jn−1 −
√

(9 + (n − 1)2)J(n−1)×1

−
√

(9 + (n − 1)2)J1×(n−1) (λ +
√

2(n − 1))I1 −
√

2(n − 1)J1

∣∣∣∣∣∣ .
Now by using Lemma 2.21, we get the desired result.

Theorem 3.12. If F3
t is a friendship graph, then

Ch[EDE(F3
t )] = (λ + 2

√
2)2t−1[λ2 − 2

√
2(2t − 1)λ − 2t(4 + (2t)2)]

Proof. The graph F3
t of order 2t + 1 has two types of vertices namely, 2t vertices of degree 2 and one vertex of degree

2t. Hence,

EDE(F3
t ) =

 2
√

2(J2t − I2t)
√

(4 + (2t)2)J2t×1√
(4 + (2t)2)J1×2t 2

√
2t(J1 − I1)

 .
Ch[F3

t ] =| λI − EDE(F3
t ) |

=

∣∣∣∣∣∣(λ + 2
√

2)I2t − 2
√

2J2t −
√

(4 + (2t)2)J2t×1

−
√

(4 + (2t)2)J1×2t (λ + 2
√

2t)I1 − 2
√

2tJ1

∣∣∣∣∣∣ .
Now by using Lemma 2.21, we get the desired result.

Theorem 3.13. If Hn − c is a helm without central vertex, then

Ch[EDE(Hn − c)] = (λ + 3
√

2)n−2(λ +
√

2)n−2[λ2 − 4
√

2(n − 2)λ + 6(n − 2)2 − 10(n − 1)2

Proof. The graph Hn−c of order 2(n−1) has two types of vertices namely, n−1 vertices are of degree 3 and remaining
(n − 1) vertices has degree 1. Hence,

EDE(Hn − c) =

[
3
√

2(Jn−1 − In−1)
√

10J(n−1)×(n−1)√
10J(n−1)×(n−1)

√
2(Jn−1 − In−1)

]
.

Ch[EDE(Hn − c)] =| λI − EDE(Hn − c) |

=

∣∣∣∣∣∣(λ + 3
√

2)In−1 − 3
√

2Jn−1 −
√

10J(n−1)×(n−1)

−
√

10J(n−1)×(n−1) (λ +
√

2)In−1 −
√

2Jn−1

∣∣∣∣∣∣ .
Now by using Lemma 2.21, we get the desired result.

Theorem 3.14. If H
′

n − c is a closed helm without central vertex, then

Ch[EDE(H
′

n − c)] = (λ − 3
√

2(2n − 3))(λ + 3
√

2)2n−3

Proof. The closed helm without central vertex H
′

n−c is 3-regular graph with 2(n−1) vertices. Hence the result follows
from equation (4).

Theorem 3.15. If S Fn − c is a sun flower graph without central vertex, then

Ch[EDE(S Fn − c)] = (λ + 3
√

2)n−2(λ + 2
√

2)n−2[λ2 − 5
√

2(n − 2)λ + 12(n − 2)2 − 13(n − 1)2]
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Proof. The sun flower graph S Fn − c without central vertex is a graph of order 2(n − 1), which has two types of
vertices. The (n − 1) vertices have degree 3 and the remaining (n − 1) vertices have degree 2. Hence,

EDE(S Fn − c) =

[
3
√

2(Jn−1 − In−1)
√

13J(n−1)×(n−1)√
13J(n−1)×(n−1) 2

√
2(Jn−1 − In−1)

]
.

Ch[EDE(S Fn − c)] =| λI − EDE(S Fn − c) |

=

∣∣∣∣∣∣(λ + 3
√

2)In−1 − 3
√

2Jn−1 −
√

13J(n−1)×(n−1)

−
√

13J(n−1)×(n−1) (λ + 2
√

2)In−1 − 2
√

2Jn−1

∣∣∣∣∣∣ .
Now by using Lemma 2.21, we get the desired result.

Theorem 3.16. If DCn is a double cone, then,

Ch[EDE(Cn)] = (λ + 4
√

2)n−1(λ +
√

2n)[λ2 − (
√

2n + 4
√

2(n − 1))λ + 8n(n − 1) − 40n]

Proof. The double cone is a graph of of order (n + 2) has two types of vertices. The n vertices have degree 4 and the
remaining 2 vertices have degree n. Hence,

EDE(DCn) =

[
4
√

2(Jn − In) 2
√

5Jn×2

2
√

5J2×n n
√

2(J2 − I2)

]
.

Ch[EDE(DCn)] =| λI − EDE(DCn) |

=

∣∣∣∣∣∣(λ + 4
√

2)In − 4
√

2Jn −2
√

5Jn×2

−2
√

5J2×n (λ + n
√

2)I2 − n
√

2J2

∣∣∣∣∣∣ .
Now by using Lemma 2.21, we get the desired result.

Theorem 3.17. If Bb is a book graph, then

Ch[EDE(Bb)] = (λ+ 2
√

2)2b−1(λ+
√

2(b + 1))[λ2 − (
√

2(b + 1) + 2
√

2(2b− 1))λ+ 4(2b− 1)(b + 1)− 4b(4 + (b + 1)2)]

Proof. The Book graph Bb of order (2b + 2) has two types of vertices. The 2b vertices with degree 2 and 2 vertices
are with degree (b + 1). Hence,

EDE(Bb) =

 2
√

2(J2b − I2b)
√

4 + (b + 1)2J2b×2√
4 + (b + 1)2J2×2b

√
2(b + 1)(J2 − I2)

 .
Ch[EDE(Bb)] =| λI − EDE(Bb) |

=

∣∣∣∣∣∣(λ + 2
√

2)I2b − 2
√

2J2b −
√

4 + (b + 1)2J2b×2

−
√

4 + (b + 1)2J2×2b (λ +
√

2(b + 1))I2 −
√

2(b + 1)J2

∣∣∣∣∣∣ .
Now by using Lemma 2.21, we get the desired result.

Theorem 3.18. If Bt is a book with triangular pages, then

Ch[EDE(Bt)] = (λ + 2
√

2)t−1(λ +
√

2(t + 1))[λ2 − (
√

2(t + 1) + 2
√

2(t − 1))λ + 4(t − 1)(t + 1) − 2t(4 + (t + 1)2)]
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Proof. The book Bt with triangular pages of order (t + 2) has two types of vertices. The t vertices have degree 2 and
the remaining 2 vertices have degree (t + 1). Hence,

EDE(Bt) =

 2
√

2(Jt − It)
√

4 + (t + 1)2Jt×2√
4 + (t + 1)2J2×t

√
2(t + 1)(J2 − I2)

 .
Ch[EDE(Bt)] =| λI − EDE(Bt) |

=

∣∣∣∣∣∣(λ + 2
√

2)It − 2
√

2Jt −
√

4 + (t + 1)2Jt×2

−
√

4 + (b + 1)2J2×t (λ +
√

2(t + 1))I2 −
√

2(t + 1)J2

∣∣∣∣∣∣ .
Now by using Lemma 2.21, we get the desired result.

Theorem 3.19. If Ln is a ladder graph, then

Ch[EDE(Ln)] = (λ + 3
√

2)2n−5(λ + 2
√

2)3[λ2 − (3
√

2(2n − 5) + 6
√

2)λ + 36(2n − 5) − 52(2n − 4)

Proof. The ladder graph Ln is a graph of order 2n and has two types of vertices. The four vertices of degree 2 and
(2n − 4) vertices of degree 3. Hence,

EDE(Ln) =

[
3
√

2(J2n−4 − I2n−4)
√

13J(2n−4)×4√
13J4×(2n−4) 2

√
2(J4 − I4)

]
.

Ch[EDE(Ln)] =| λI − EDE(Ln) |

=

∣∣∣∣∣∣(λ + 3
√

2)I2n−4 − 9J2n−4 −
√

13J(2n−4)×4

−
√

13J4×(2n−4) (λ + 2
√

2)I4 − 2
√

2J4

∣∣∣∣∣∣ .
Now by using Lemma 2.21, we get the desired result.

Theorem 3.20. If Prn is a prism graph, then

Ch[EDE(Prn)] = (λ + 3
√

2)2n−1(λ − 3
√

2(2n − 1))

Proof. The prism Prn is 3-regular graph with 2n vertices. Hence, the result follows from equation (4).

Theorem 3.21. If Tn is a triangular snake, then

Ch[EDE(Tn)] = (λ + 2
√

2)n(λ + 4
√

2)n−3[λ2 − (4
√

2(n − 3) + 2
√

2n)λ + 16n(n − 3) − 20(n + 1)(n − 2)]

Proof. The triangular snake Tn of order (2n − 1) has two types of vertices. The (n + 1) vertices have degree 2 and the
remaining (n − 2) vertices have degree 4. Hence,

EDE(Tn) =

[
2
√

2(Jn+1 − In+1) 2
√

5J(n+1)×(n−2)

2
√

5J(n−2)×(n+1) 4
√

2(Jn−2 − In−2)

]
.

Ch[EDE(Tn)] =| λI − EDE(Tn) |

=

∣∣∣∣∣∣(λ + 2
√

2)In+1 − 2
√

2Jn+1 −2
√

5J(n+1)×(n−2)

−2
√

5J(n−2)×(n+1) (λ + 4
√

2)In−2 − 4
√

2Jn−2

∣∣∣∣∣∣ .
Now by using Lemma 2.21, we get the desired result.

Theorem 3.22. If Qn is a quadrilateral snake, then

Ch[EDE(Qn)] = (λ + 2
√

2)2n−1(λ + 4
√

2)n−3[λ2 − (4
√

2(n − 3) + 2
√

2(2n − 1))λ + 16(2n − 1)(n − 3) − 40n(n − 2)]
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Proof. The quadrilateral snake Qn of order 3n − 2 has two types of vertices. The 2n vertices have degree 2 and the
remaining (n − 2) vertices have degree 4. Hence,

EDE(Qn) =

[
2
√

2(J2n − I2n) 2
√

5J(2n)×(n−2)

2
√

5J(n−2)×(2n) 4
√

2(Jn−2 − In−2)

]
.

Ch[EDE(Qn)] =| λI − EDE(Qn) |

=

∣∣∣∣∣∣(λ + 2
√

2)I2n − 2
√

2J2n −2
√

5J(2n)×(n−2)

−2
√

5J(n−2)×(2n) (λ + 4
√

2)In−2 − 4
√

2Jn−2

∣∣∣∣∣∣ .
Now by using Lemma 2.21, we get the desired result.

Theorem 3.23. If G is an r-regular graph of order n, then

Ch[EDE(J(G))] = (λ +
√

2r1(
nr
2
− 1))(λ −

√
2r1)( nr

2 −1) where, r1 =
(n − 4)r

2
+ 1

Proof. The jump graph J(G) is r-regular graph is r1 = ( (n−4)r
2 + 1)-regular graph with nr

2 vertices. Hence, the result
follows from equation (4).

Theorem 3.24. If S n is a Star graph, then

Ch[EDE(S n)] = (λ + 1)n−2[λ2 − (n − 2)λ −
(n − 1)(1 + (n − 1)2)

4
]

Proof. The graph S n of order n has two types of vertices namely, (n − 1) vertices are of degree 1 and central vertex
has degree (n − 1). Hence,

EDE(S n) =

 √
2(Jn−1 − In−1)

√
1 + (n − 1)2J(n−1)×1√

1 + (n − 1)2J1×(n−1)
√

2(n − 1)(J1 − I1)

 .
Ch[EDE(S n)] =| λI − EDE(S n) |

=

∣∣∣∣∣∣(λ +
√

2)In−1 −
√

2Jn−1 −
√

1 + (n − 1)2J(n−1)×1

−
√

1 + (n − 1)2J1×(n−1) (λ +
√

2(n − 1))I1 −
√

2(n − 1)J1

∣∣∣∣∣∣ .
Now by using Lemma 2.21, we get the desired result.

Theorem 3.25. If S n,n is a double star graph, then

Ch[EDE(S n,n)] = (λ +
√

2)2n−3(λ +
√

2n)[λ2 − (
√

2(2n − 3) + n
√

2)λ + 2n(2n − 3) − 4(n − 1)(n2 + 1)]

Proof. The graph S n,n of order 2n has two types of vertices namely, (2n − 1) vertices are of degree 1 and remaining
two of degree n. Hence,

EDE(S n,n) =

√2(J2n−2 − I2n−2)
√

n2 + 1J(2n−2)×2√
n2 + 1J2×(2n−2)

√
2n(J2 − I2)

 .
Ch[EDE(S n,n)] =| λI − EDE(S n,n) |

=

∣∣∣∣∣∣(λ +
√

2)I2n−2 −
√

2J2n−2 −
√

(n2 + 1)J(2n−2)×2

−
√

(n2 + 1)J2×(2n−2) (λ +
√

2n)I2 −
√

2nJ2

∣∣∣∣∣∣ .
Now by using Lemma 2.21, we get the desired result.
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Theorem 3.26. If Km,n is a complete bipartite graph, then

Ch[EDE(Km,n)] = (λ +
√

2n)m−1(λ +
√

2m)n−1[λ2 − (
√

2m(n − 1) +
√

2n(m − 1))λ

+2(m − 1)(n − 1)mn − mn(m2 + n2)]

Proof. The graph Km,n of order (m + n) has two types of vertices namely, m vertices are of degree n and n vertices of
degree m. Hence,

EDE(Km,n) =

 √2n(Jm − Im)
√

m2 + n2Jm×n√
m2 + n2Jn×m

√
2m(Jn − In)

 .
Ch[EDE(Km,n)] =| λI − EDE(Km,n) |

=

∣∣∣∣∣∣(λ +
√

2n)Im −
√

2nJm −
√

m2 + n2Jm×n

−
√

m2 + n2Jm×n (λ +
√

2m)In −
√

2mJn

∣∣∣∣∣∣ .
Now by using Lemma 2.21, we get the desired result.

Theorem 3.27. If Pn is a path graph, then

Ch[EDE(Pn)] = (λ + 2
√

2)n−3(λ +
√

2)[λ2 − (2
√

2(n − 3) +
√

2)λ + 4(n − 3) − 10(n − 2)]

Proof. The graph Pn of order n has two types of vertices namely, (n − 2) vertices are of degree 2 and remaining two
end vertices of degree 1. Hence,

EDE(Pn) =

[
2
√

2(Jn−2 − In−2)
√

5J(n−2)×2√
5J2×(n−2)

√
2(J2 − I2)

]
.

Ch[EDE(Pn)] =| λI − EDE(Pn) |

=

∣∣∣∣∣∣(λ + 2
√

2)In−2 − 2
√

2Jn−2 −
√

5J(n−2)×2

−
√

5J2×(n−2) (λ +
√

2)I2 −
√

2J2

∣∣∣∣∣∣ .
Now by using Lemma 2.21, we get the desired result.

A dumbbell is the graph obtained from two disjoint cycles by joining them by a path.

Theorem 3.28. If Dn,n is a dumbbell graph, then

Ch[EDE(Dn,n)] = (λ + 2
√

2)2n−3(λ + 3
√

2)[λ2 − (2
√

2(2n − 3) + 3
√

2)λ + 12(2n − 3) − 52(n − 1)]

Proof. The graph Dn,n of order 2n has two types of vertices namely, 2n− 2 vertices are of degree 2 and remaining two
of degree 3. Hence,

EDE(Dn,n) =

[
2
√

2(J2n−2 − I2n−2)
√

13J(2n−2)×2√
13J2×(2n−2) 3

√
2(J2 − I2)

]
.

Ch[EDE(Dn,n)] =| λI − EDE(Dn,n) |

=

∣∣∣∣∣∣(λ + 2
√

2)I2n−2 − 2
√

2J2n−2 −
√

13J(2n−2)×2

−
√

13J2×(2n−2) (λ + 3
√

2)I2 − 3
√

2J2

∣∣∣∣∣∣ .
Now by using Lemma 2.21, we get the desired result.
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4. Hyperenergetic graphs

A graph G with n vertices is said to be hyperenergetic [11] if E(G) ≥ 2n − 2, and to be nonhyperenergetic if
E(G) ≤ 2n − 2. A noncomplete graph whose energy is equal to (2n − 2) is called borderenergetic [9].

Definition 4.1. A graph G of order n is said to be Euclidean degree hyperenergetic if EDE(G) ≥ 2
√

2(n − 1)2.

Definition 4.2. A graph G of order n is said to be Euclidean degree nonhyperenergetic if EDE(G) ≤ 2
√

2(n − 1)2.

Definition 4.3. A noncomplete graph of order n whose energy is equal to 2
√

2(n − 1)2 is called Euclidean degree
borderenergetic.

Definition 4.4. Two graphs G1 and G2 are said to be Euclidean degree equienergetic if they have same Euclidean
degree energy. That is, E[EDE(G1)] = E[EDE(G2)].

Theorem 4.5. If G is an r-regular graph of order n, then G is

(i) Euclidean degree borderenergetic for r = 0,

(ii) Euclidean degree nonhyperenergetic for r ≥ 1.

Proof. The graph G is (n − 1 − r)-regular graph.

Ch[EDE(G), λ] = (λ −
√

2(n − 1)(n − 1 − r))(λ +
√

2(n − 1 − r))n−1

Thus ,
E[EDE(G)] = 2

√
2(n − 1 − r)(n − 1)

From Definition 4.1, the graph G is Euclidean degree hyperenergetic if E(G) > 2
√

2(n − 1)2.
That is, if 2

√
2(n − 1 − r)(n − 1) ≥ 2

√
2(n − 1)2. This inequality does not hold for any value of r, whereas the

two quantities are equal when r = 0. Hence, G is Euclidean degree borderenergetic for r = 0 and Euclidean degree
nonhyperenergetic for r ≥ 1.

Theorem 4.6. The graph L(Kn) is Euclidean degree borderenergetic for n = 2, 3 and Euclidean degree nonhyperen-
ergetic for n ≥ 4.

Proof. The complete graph Kn is an (n − 1)-regular graph of order n. Thus,

Ch[EDE(Kn), λ] = (λ −
√

2(n − 1)2)(λ +
√

2(n − 1))n−1

The line graph of Kn is L(Kn) is an (2n − 4)-regular graph of order n1 = nr
2 and,

Ch[EDE(Kn), λ] = (λ − 2
√

2(n − 2)(
nr
2
− 1))(λ + 2

√
2(n − 2))

nr
2 −1

Hence,
E[EDE(L(Kn))] = 2

√
2(n − 2)(nr − 2)

Clearly, E[EDE(L(Kn))] ≤ 2
√

2( n(n−1)
2 − 1)2 for n ≥ 4 and equality holds for n = 2, 3.

Hence, L(K2), L(K3) are Euclidean degree borderenergetic and L(Kn) is Euclidean degree nonhyperenergetic for
n ≥ 4.

Theorem 4.7. If G is an r-regular graph of order n, then J(G) is

(i) Euclidean degree borderenergetic for r = 1,

(ii) Euclidean degree nonhyperenergetic for r ≥ 2.
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Proof. The jump graph J(G) of the r-regular graph G is r1 = ( (n−4)r
2 + 1)-regular graph with nr

2 vertices.

Ch[EDE(J(G))] = (λ +
√

2r1(
nr
2
− 1))(λ −

√
2r1)( nr

2 −1) where, r1 =
(n − 4)r

2
+ 1

Hence,
E[EDE(J(G)] = 2

√
2r1(

nr
2
− 1)

=
√

2((n − 4)r + 2)(
nr
2
− 1)

E[EDE(J(G))] ≤ 2
√

2( nr
2 − 1)2 for r ≥ 2 and equality holds for r = 1.

Theorem 4.8. If G is an r-regular graph of order n, then T (G) is Euclidean degree nonhyperenergetic.

Proof. The total graph T (G) of an r-regular graph G is a regular graph of degree 2r with n + nr
2 vertices. Then,

Ch[EDE(T (G))] = (λ − 2
√

2r(n +
nr
2
− 1))(λ + 2

√
2r)n+ nr

2 −1

Hence,
E(EDE(T (G))) = 4

√
2r(n +

nr
2
− 1)

E[EDE(T (G))] ≤ 2
√

2(n + nr
2 − 1)2 for all r. Thus T (G) is Euclidean degree nonhyperenergetic.

5. Conclusion

We conclude with the following observations.
In this paper, we have obtained the characteristic polynomial of the Euclidean degree matrix of graphs obtained by
some graphs operations. Also, bounds for both largest Euclidean degree eigenvalue and Euclidean degree energy of
graphs are established. we have characterized Euclidean degree hyperenergetic, borderenergetic and equienergetic of
some graphs.
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