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Abstract

The aim of this paper is to introduce and investigate some new identities and formulas involving many kinds of special numbers
and polynomials with help of the some known results derived from blending special formulas, generating functions and their
functional equations. By using functional equations of generating functions for special numbers and polynomials, we give some
relations and identities including the Genocchi polynomials of negative order, the Euler numbers and polynomials of negative
order, the Changhee numbers and polynomials of negative order, the Lah numbers, the Hermite polynomials, the central factorial
numbers, the Bernoulli numbers of higher order, the Daehee numbers, the Bernstein basis functions, the Stirling numbers, and
also the combinatorial numbers and polynomials. Moreover, we also give several combinatorial sums and identities associated
with aforementioned numbers and polynomials. Finally, we derive some finite and infinite series representations that include the
incomplete gamma function and aforementioned numbers. In addition, convenient links of identities, formulas, relations and results
appointed in this paper with those in earlier and future studies come to attention in detail for readers.

Keywords: Bernoulli numbers and polynomials, Euler numbers and polynomials, Genocchi numbers and polynomials, Central
factorial numbers, Hermite polynomials, Stirling numbers, Lah numbers, Combinatorial numbers, Generating functions,
Incomplete gamma function

2010 MSC: 05A15, 11B68, 11B73, 26C05, 33B20, 33B10

This work is licensed under a Creative Commons Attribution 4.0 International License.

1. Introduction

Special numbers including the Lah numbers, the Stirling numbers, and the central factorial numbers have many
important applications in almost all areas of mathematics especially in theory of combinatorial analysis, numerical
analysis, in approximation theory, and in the theory of analytic number theory. Recently using different techniques
and methods, many interesting properties of negative order special numbers and polynomials involving the Bernoulli
numbers and polynomials, the Euler numbers and polynomials, the Genocchi numbers and polynomials, the Changhee
numbers and polynomials, and also the combinatorial numbers and polynomials have been studied.

The motivations of this paper are given as follows:
The first goal of this paper is to investigate the central factorial numbers and their generating functions with

trigonometric functions. The second goal of this paper is to obtain new relations and identities for the Bernoulli
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numbers of higher order and other well-known special numbers and polynomials. By using these generating functions
with their functional equations, we give some novel formulas, identities, relations, combinatorial sums, and also finite
and infinite series representations of the Genocchi polynomials of negative order, the Euler numbers and polynomials
of the first kind of negative order, the Changhee numbers and polynomials of negative order, the Stirling numbers,
the Hermite polynomials, the combinatorial numbers, the Bernstein basis functions, the Daehee numbers, and the Lah
numbers.

Throughout of this paper, the following well-known notations, definitions, relations and formulas are used:
Let N, Z and C denote the set of natural numbers, the set of integer numbers, the set of complex numbers,

respectively, and also N0 = N ∪ {0}. We also assume that:

0n =

{
1, n = 0
0 n ∈ N.

Furthermore, the falling factorial is defined by

(α)n = α (α − 1) (α − 2) ... (α − n + 1) ,

n ∈ N and (α)0 = 1 such that (
α

n

)
=

(α)n

n!
,

where n ∈ N0. For n ∈ N0, we have
(−1)n (−α)n = (α + n − 1)n

(cf. [1]-[48]; and references therein).
The upper incomplete gamma function Γ (n, x) is defined by

Γ (n, x) =

∞∫
x

tn−1e−tdt, (1.1)

where
∣∣∣arg (x)

∣∣∣ < π (cf. [1, p. 262], [8], [46]; and references therein). This function is solutions to various problems in
applied mathematics, astrophysics, heat conduction, nuclear physics, probability theory, statistics, engineering, and in
the study of Fourier and Laplace transforms.

Putting x = 0 in (1.1), we have the gamma function:

Γ (n) = Γ (n, 0) ,

where Re (n) > 0 (cf. [1], [8], [30], [46]).
The values of the function Γ (−n, x) is given by

Γ (−n, x) =
(−1)n

n!

Γ (0, x) −
e−x

x

n−1∑
j=0

(−1) j j!
x j

 (1.2)

(cf. [1, p. 262]).
The Bernoulli polynomials B(v)

n (x) of order v are defined by means of the following generating function:( t
et − 1

)v
ext =

∞∑
n=0

B(v)
n (x)

tn

n!
(1.3)

(cf. [27], [39], [42], [46]; and references therein).
Here we note that the sign (v) which is given power of the polynomials B(v)

n (x) represents the order, not vth the
derivative of Bn (x).

Putting x = 0 in (1.3), we have the Bernoulli numbers of order v:

B(v)
n = B(v)

n (0)
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(cf. [27], [39], [42], [46]).
When v = 0 in (1.3), we have

B(0)
n (x) = xn

and

B(0)
n = B(0)

n (0) =

{
1, n = 0
0 n ∈ N.

When x = 0 and v = 1 in (1.3), we have
Bn = B(1)

n (0) ,

where Bn denotes the Bernoulli numbers (cf. [1]-[47]; and references therein).
With the help of (1.3), we get

B(n+1)
n = (−1)nn! (1.4)

(cf. [5, Eq. (2.14)]).
The Bernoulli polynomials B(−k)

n (x) of order −k are defined by means of the following generating function:

HNB (t, x, k) =

(
et − 1

t

)k

ext =

∞∑
n=0

B(−k)
n (x)

tn

n!
(1.5)

(cf. [7], [27], [39], [42], [46]; and references therein).
Putting x = 0 in (1.5), we have the Bernoulli numbers of order −k:

B(−k)
n = B(−k)

n (0)

(cf. [7], [27], [39], [42], [46]).
With the help of (1.5), an explicit formula for the Bernoulli polynomials of negative order is given as follows:

B(−k)
n (x) =

1(
n+k

k

)
k!

k∑
j=0

(−1)k− j
(
k
j

)
(x + j)n+k

(cf. [7, Eq. (3.20)]). Putting x = 0 in the above equation, we have the following well-known identity [45, Eq. (7.17)]:

B(−k)
n =

1(
n+k

k

)S 2 (n + k, k) , (1.6)

where S 2 (n, k) denotes the Stirling numbers of the second kind which are defined by means of the following generating
function:

HS (t, k) =

(
et − 1

)k

k!
=

∞∑
n=0

S 2 (n, k)
tn

n!
(1.7)

(cf. [1]-[48]; and references therein). By using (1.7), an explicit formula for the numbers S 2 (n, k) is given as follows:

S 2 (n, k) =
1
k!

k∑
j=0

(−1)k− j
(
k
j

)
jn (1.8)

and for k > n,
S 2 (n, k) = 0

(cf. [1]-[48]).
The Euler polynomials E(v)

n (x) of the first kind of order v are defined by means of the following generating
function: (

2
et + 1

)v

ext =

∞∑
n=0

E(v)
n (x)

tn

n!
(1.9)
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(cf. [27], [38], [39], [46]; and references therein).
Putting x = 0 in (1.9), we have the Euler numbers of the first kind of order v:

E(v)
n = E(v)

n (0)

(cf. [27], [38], [39], [46]).
When v = 0 in (1.9), we have

E(0)
n (x) = xn

and

E(0)
n = E(0)

n (0) =

{
1, n = 0
0 n ∈ N.

When x = 0 and v = 1 in (1.9), we have
En = E(1)

n (0) ,

where En denotes the Euler numbers of the first kind (cf. [1]-[47]; and references therein).
The Euler polynomials E(−k)

n (x) of the first kind of order −k are defined by means of the following generating
function:

HNE (t, x, k) =

(
et + 1

2

)k

ext =

∞∑
n=0

E(−k)
n (x)

tn

n!
(1.10)

(cf. [27], [38], [39], [46]; and references therein).
Putting x = 0 in (1.10), we have the Euler numbers of the first kind of order −k:

E(−k)
n = E(−k)

n (0)

(cf. [27], [38], [39], [46]).
By using (1.10), a computation formula for the Euler polynomials of the first kind of negative order is given as

follows:

E(−k)
n (x) =

n∑
j=0

(
n
j

)
xn− j

j∑
d=0

(
d − k − 1

d

)
d!(−1)d

2d S 2 ( j, d)

(cf. [27], [38], [39], [46]).
The Euler numbers E∗(−k)

n of the second kind of order −k are defined by means of the following generating function:(
et + e−t

2

)k

=

∞∑
n=0

E∗(−k)
n

tn

n!
(1.11)

(cf. [38], [42]; and references therein).
By using (1.11), an explicit formula for the Euler polynomials of the second kind of negative order is given as

follows:

E∗(−k)
n = 2n−k

k∑
j=0

(
k
j

) (
j −

k
2

)n

(cf. [38], [42]).
The Genocchi polynomials G(−k)

n (x) of order −k are defined by means of the following generating function:

HNG (t, x, k) =

(
et + 1

2t

)k

ext =

∞∑
n=0

G(−k)
n (x)

tn

n!
(1.12)

(cf. [28], [46]; and references therein).
Putting x = 0 in (1.12), we have the Genocchi numbers of order −k:

G(−k)
n = G(−k)

n (0)
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(cf. [28], [46]).
By using (1.12), a computation formula for the Genocchi polynomials of negative order is given as follows:

G(−k)
n (x) =

(
n + k

k

)−1 n+k∑
j=0

(
n + k

j

)
xn+k− j

k∑
d=0

S 2 ( j, d)
2d (k − d)!

(1.13)

(cf. [28], [46]).
The numbers B (n, k) are defined by the following combinatorial sum:

B (n, k) =

k∑
j=0

(
k
j

)
jn (1.14)

which satisfies the following differential equation:

B (n, k) =
dn

dtn

(
et + 1

)k
|t=0

(cf. [14]).
In the work of Spivey [48, Identity 12.], one has the following relation:

B (n, k) =

n∑
j=0

(
k
j

)
j!2k− jS 2 (n, j) .

Recently, Simsek [39, Eq. (29)] gave a relation between the numbers E(−k)
n and the numbers B (n, k) as follows:

E(−k)
n = 2−kB (n, k) . (1.15)

The central factorial numbers of the second kind T (n, k) are defined by means of the following generating function:

HT (t, k) =

(
et + e−t − 2

)k

(2k)!
=

∞∑
n=0

T (n, k)
t2n

(2n)!
(1.16)

(cf. [4], [9], [37], [39]; and references therein).
In [9], Cigler gave an explicit formula for the numbers T (n, k) as follows:

T (n, k) =
1

(2k)!

2k∑
j=0

(−1) j
(
2k
j

)
( j − k)2n .

Moreover, the central factorial numbers are also associated with hyperbolic functions and this relationship is given as
follows:

HT (t, k) =
2k

(2k)!
(cosh(t) − 1)k (1.17)

(cf. [37]).
The Hermite polynomials Hn (x) are defined by means of the following generating function:

GH(t, x) = e2xt−t2
=

∞∑
n=0

Hn (x)
tn

n!
(1.18)

(cf. [30, p. 187], [33]; and references therein).
By using (1.18), an explicit formula for the polynomials Hn (x) is given as follows:

Hn (x) =

[ n
2 ]∑

j=0

(−1) j n! (2x)n−2 j

j!(n − 2 j)!
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(cf. [30], [33]).
The Lah numbers L (n, k) are defined by means of the following generating function:( t

1 − t

)k
= k!

∞∑
n=0

L (n, k)
tn

n!
(1.19)

(cf. [10, p. 156], [18], [32]; and references therein).
By using (1.19), an explicit formula for the numbers L (n, k) is given as follows:

L (n, k) = (−1)n n!
k!

(
n − 1
k − 1

)
, (1.20)

where n, k ∈ N with 1 ≤ k ≤ n (cf. [10], [32]).
The Lah numbers are also related to the falling factorial, and this relation is given as follows:

(−x)n =

n∑
k=0

L (n, k) (x)k (1.21)

so that

(x)n =

n∑
k=0

L (n, k) (−x)k

(cf. [10, p. 156], [32]).
The Catalan numbers Cn are defined by means of the following generating function:

1 −
√

1 − 4t
2t

=

∞∑
n=0

Cntn,

where 0 < |t| ≤ 1
4 and C0 = 1 (cf. [24]). The explicit formula for the Catalan numbers is given as follows:

Cn =
1

n + 1

(
2n
n

)
(1.22)

(cf. [24]).
The Daehee numbers D(v)

n of order v are defined by means of the following generating function:(
log (1 + t)

t

)v

=

∞∑
n=0

D(v)
n

tn

n!
(1.23)

(cf. [22]).
When v = 1 in (1.23), we have

Dn = D(1)
n ,

where Dn denotes the Daehee numbers (cf. [32, p. 45], [11], [19]). By using (1.23), we get

Dn = (−1)n n!
n + 1

(1.24)

(cf. [19], [31]).
The Changhee numbers Ch(v)

n of order v are defined by means of the following generating function:(
2

2 + t

)v

=

∞∑
n=0

Ch(v)
n

tn

n!
(1.25)

(cf. [20], [23]).
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When v = 1 in (1.25), we have
Chn = Ch(1)

n ,

where Chn denotes the Changhee numbers (cf. [20], [21], [23]). By using (1.25), we get

Chn = (−1)n n!
2n (1.26)

(cf. [21]).
The Changhee polynomials Ch(−k)

n (x) of order −k are defined by means of the following generating function:

HNCh (t, x, k) =

(
2 + t

2

)k

(1 + t)x =

∞∑
n=0

Ch(−k)
n (x)

tn

n!
(1.27)

(cf. [23]).
Putting x = 0 in (1.27), we have the Changhee numbers of order −k:

Ch(−k)
n = Ch(−k)

n (0)

(cf. [23]).
By using (1.27), a computation formula for the polynomials Ch(−k)

n (x) is given as follows:

Ch(−k)
n (x) =

1
2k

k∑
j=0

(
k
j

)
(x + j)n

(cf. [23, Eq. (30)]). By aid of (1.7), (1.10) and (1.27), we get

E(−k)
n (x) =

n∑
j=0

Ch(−k)
j (x) S 2 (n, j) (1.28)

(cf. [23, Eq. (22)]).
The numbers Y (v)

n (λ) of order v are defined by means of the following generating function:(
2

λ (1 + λt) − 1

)v

=

∞∑
n=0

Y (v)
n (λ)

tn

n!
(1.29)

(cf. [25]).
Putting v = 1 in (1.29), we have the numbers Yn (λ):

Yn (λ) = Y (1)
n (λ)

(cf. [41]).
By using (1.29), an explicit formula for the numbers Yn (λ) is given as follows:

Yn (λ) =
2 (−1)n n!
λ − 1

(
λ2

λ − 1

)n

(1.30)

(cf. [41]).
In the special case of (1.30) when λ = −1, we get

Yn (−1) = (−1)n+1 Chn (1.31)

(cf. [47]).
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The numbers Y (−k)
n (λ) of order −k are defined by means of the following generating function:(

λ (1 + λt) − 1
2

)k

=

∞∑
n=0

Y (−k)
n (λ)

tn

n!
, (1.32)

(cf. [26]).
By using (1.32), we get

Y (−k)
n (λ) = n! (−1)k−n 2−kλnBn,k (λ) , (1.33)

where λ ∈ [0, 1] and Bv,n (x) denotes the Bernstein basis functions which is defined by means of the following gener-
ating function:

(xt)v e(1−x)t

v!
=

∞∑
n=0

Bv,n (x)
tn

n!

(cf. [2], [36], [44]). For x ∈ [0, 1], using the above generating function, one has

Bv,n (x) =

(
n
v

)
xv (1 − x)n−v ,

where v = 0, 1, 2, ..., n; n ∈ N0 and also Bv,n (x) = 0 if v > n (cf. [2], [3], [13], [12], [36], [44]).
In the special case of (1.33) when k = n, we obtain

Y (−n)
n (λ) = 2−nn!λ2n (1.34)

(cf. [26]).
The numbers y6 (m, n; λ, p) are defined by the following generating function:

1
n!

n∑
k=0

(
n
k

)p

λketk =

∞∑
m=0

y6 (m, n; λ, p)
tm

m!
(1.35)

(cf. [43]).
By using (1.35), an explicit formula for the numbers y6 (m, n; λ, p) is given as follows:

y6 (m, n; λ, p) =
1
n!

n∑
k=0

(
n
k

)p

kmλk (1.36)

(cf. [43]).
In the special case of (1.36) when m = 0, λ = 1 and p = 2, we get a relation among the numbers y6 (m, n; λ, p), the

Daehee numbers and the Catalan numbers as follows:

y6 (0, n; 1, 2) = (−1)n Cn

Dn
(1.37)

(cf. [43]).
This paper is organized as follows:
In Section 2, by using generating functions and functional equations techniques, we derive some new identities

and combinatorial sums related to the central factorial numbers, the Stirling numbers, the Genocchi polynomials of
negative order, the Euler numbers and polynomials of negative order, the Changhee numbers and polynomials of
negative order, the Lah numbers, the numbers B (n, k), and the Hermite polynomials.

In Section 3, we give many identities and formulas including the Bernoulli numbers of higher order, the Euler
numbers of the first kind of negative order, the Catalan numbers, the Lah numbers, the Changhee numbers, the Daehee
numbers, the Bernstein basis functions, and other combinatorial numbers and polynomials. Moreover, we derive some
finite and infinite series representations related to the incomplete gamma function and aforementioned numbers.

Finally, in Section 4, we give conclusion and observations on our results.
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2. Combinatorial sums and formulas for central factorial numbers, special numbers and polynomials

In this section, using generating functions and functional equations techniques, some of which are related to hy-
perbolic functions, we give some interesting identities and combinatorial sums related to the central factorial numbers,
the Stirling numbers of the second kind, the Genocchi polynomials of negative order, the Euler numbers and polyno-
mials of the first kind of negative order, the Changhee numbers and polynomials of negative order, the Lah numbers,
the numbers B (n, k), the numbers y6 (m, n; λ, p), and the Hermite polynomials.

Theorem 2.1. Let n, k ∈ N0. Then we have

T (n, k) =
22n+k

(2k)!

k∑
j=0

(−1)k− j
(
k
j

)
E(− j)

2n

(
− j
2

)
(2.1)

and
k∑

j=0

(−1)− j
(
k
j

)
E(− j)

2n+1

(
− j
2

)
= 0. (2.2)

Proof. Using binomial theorem in (1.17), we have

∞∑
n=0

T (n, k)
t2n

(2n)!
=

2k

(2k)!

k∑
j=0

(−1)k− j
(
k
j

)
(cosh(t)) j . (2.3)

Since

cosh(t) =
et + e−t

2
equation (2.3) reduces to the following functional equation:

∞∑
n=0

T (n, k)
t2n

(2n)!
=

2k

(2k)!

k∑
j=0

(−1)k− j
(
k
j

)
HAE

(
2t,
− j
2
, j

)
.

Combining the above equation with (1.10), we get

∞∑
n=0

T (n, k)
t2n

(2n)!
=

2k

(2k)!

∞∑
n=0

k∑
j=0

(−1)k− j
(
k
j

)
2nE(− j)

n

(
− j
2

) tn

n!
.

Comparing the coefficients on both sides of the above equation, we arrive at the desired result.

Remark 2.2. Note that Simsek [40] recently gave a relation between the numbers E∗(−k)
n and the numbers T (n, k) by

the following result:

T (n, k) =
2k

(2k)!

k∑
j=0

(−1)k− j
(
k
j

)
E∗(− j)

2n

(cf. [40, Eq. (13)]).

Combining (2.1) with (1.15), we arrive at the following theorem:

Theorem 2.3. Let n, k ∈ N0. Then we have

T (n, k) =
2k

(2k)!

k∑
j=0

2n∑
v=0

(−1)k− j
(
k
j

)(
2n
v

)
2v− j (− j)2n−v B (v, j) .

With the help of (2.2), (1.15) and (1.14), we also obtain the following combinatorial sum:
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Corollary 2.4. Let n, k ∈ N0. Then we have

2n+1∑
v=0

k∑
j=0

j∑
m=0

(−1) j+v
(
k
j

)(
j

m

)(
2n + 1

v

)
2v− j j2n+1−vmv = 0. (2.4)

By combining (2.4) with (1.36), we arrive at the following corollary:

Corollary 2.5. Let n, k ∈ N0. Then we have

2n+1∑
v=0

k∑
j=0

(−1) j+v j!
(
2n + 1

v

)(
k
j

)
2v− j j2n+1−vy6 (v, j; 1, 1) = 0.

Combining Theorem 2.1 with (1.28), we arrive at the following result:

Corollary 2.6. Let n, k ∈ N0. Then we have

T (n, k) =
22n+k

(2k)!

k∑
j=0

2n∑
v=0

(−1)k− j
(
k
j

)
Ch(− j)

v

(
− j
2

)
S 2 (2n, v)

and
k∑

j=0

2n+1∑
v=0

(−1)− j
(
k
j

)
Ch(− j)

v

(
− j
2

)
S 2 (2n + 1, v) = 0.

Theorem 2.7. Let n, k ∈ N0. Then we have

T (n, k) =
22n+k

(2k)!

k∑
j=0

(−1)k− j
(
k
j

)
(2n) j G(− j)

2n− j

(
− j
2

)
(2.5)

and
k∑

j=0

(−1)− j
(
k
j

)
(2n + 1) j G(− j)

2n+1− j

(
− j
2

)
= 0. (2.6)

Proof. By using (2.3), we have the following functional equation:

∞∑
n=0

T (n, k)
t2n

(2n)!
=

2k

(2k)!

k∑
j=0

(−1)k− j
(
k
j

)
(2t) j HAG

(
2t,
− j
2
, j

)
.

Combining the above equation with (1.12), we have

∞∑
n=0

T (n, k)
t2n

(2n)!
=

2k

(2k)!

∞∑
n=0

k∑
j=0

(−1)k− j
(
k
j

)
(n) j 2nG(− j)

n− j

(
− j
2

) tn

n!
.

Comparing the coefficients on both sides of the above equation, we arrive at the desired result.

By combining (2.5) with (1.13), we arrive at the following result:

Corollary 2.8. Let n, k ∈ N0. Then we have

T (n, k) =

2n∑
m=0

k∑
j=0

j∑
v=0

(−1)k− j−m
(
k
j

)(
j
v

)(
2n
m

)
j2n−m2m+k−vv!

(2k)!
S 2 (m, v) .

With the help of (2.6), (1.13) and (1.8), we also obtain the following combinatorial sum:
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Corollary 2.9. Let n, k ∈ N0. Then we have

2n+1∑
m=0

k∑
j=0

j∑
v=0

v∑
d=0

(−1) j+d+1−m
(
k
j

)(
j
v

)(
v
d

)(
2n + 1

m

)
j2n+1−m (2v − 2d)m

2v = 0.

Replacing x by −x into (1.21), then combining the final equation with Theorem 2.7, we arrive at the following
result:

Corollary 2.10. Let n, k ∈ N0. Then we have

T (n, k) =
22n+k

(2k)!

k∑
j=0

j∑
v=0

(−1)k− j
(
k
j

)
L ( j, v) (−2n)v G(− j)

2n− j

(
− j
2

)
and

k∑
j=0

j∑
v=0

(−1) j
(
k
j

)
L ( j, v) (−2n − 1)v G(− j)

2n+1− j

(
− j
2

)
= 0.

Theorem 2.11. Let n ∈ N0. Then we have

k∑
j=0

[ n
2 ]∑

v=0

(
k
j

)(
n
2v

)
2− j(2 j)! jn−2vT (v, j) =

n∑
m=0

(
2m
m

)
m!Ch(−k)

m S 2 (n, 2m) .

Proof. Putting x = 0 and using binomial theorem in (1.27), we have

k∑
j=0

(
k
j

)
2− jt j =

∞∑
m=0

Ch(−k)
m

tm

m!
. (2.7)

Substituting t = (eu − 1)2 into the above equation, we get the following functional equation:

k∑
j=0

(
k
j

)
2− j (2 j)!eu jHT (u, j) =

∞∑
m=0

(2m)!
m!

Ch(−k)
m HS (u, 2m) .

Combining the above equation with (1.16) and (1.7), we have

k∑
j=0

(
k
j

)
2− j (2 j)!

∞∑
n=0

jn
un

n!

∞∑
n=0

T (n, j)
u2n

(2n)!
=

∞∑
m=0

Ch(−k)
m

(2m)!
m!

∞∑
n=0

S 2 (n, 2m)
un

n!
.

Thus,
∞∑

n=0

k∑
j=0

[ n
2 ]∑

v=0

(
k
j

)(
n
2v

)
2− j (2 j)! jn−2vT (v, j)

un

n!
=

∞∑
n=0

n∑
m=0

(2m)!
m!

Ch(−k)
m S 2 (n, 2m)

un

n!
.

Comparing the coefficients of un

n! on the both sides of the above equation, we arrive at the desired result.

Theorem 2.12. Let n ∈ N0. Then we have

k∑
j=0

(
k
j

)
2− j j!S 2 (n, j) =

n∑
m=0

Ch(−k)
m S 2 (n,m) .
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Proof. Substituting t = (eu − 1) into (2.7), we have the following functional equation:

k∑
j=0

(
k
j

)
2− j j!HS (u, j) =

∞∑
m=0

Ch(−k)
m HS (u,m) .

Combining the above equation with (1.7), we have

∞∑
n=0

k∑
j=0

(
k
j

)
2− j j!S 2 (n, j)

un

n!
=

∞∑
n=0

n∑
m=0

Ch(−k)
m S 2 (n,m)

un

n!
.

Comparing the coefficients of un

n! on the both sides of the above equation, we arrive at the desired result.

Theorem 2.13. Let n ∈ N0. Then we have

n∑
j=0

(
n
j

)
2 jE(−k)

j Hn− j (x) =

[ n
2 ]∑

j=0

n−2 j∑
m=0

(−1) j
(

n
2 j

)
2n−2 j (2 j)!

j!
Ch(−k)

m (x)S 2(n − 2 j,m).

Proof. Substituting t = e2u − 1 into (1.27), we get the following functional equation:

GH (u, x) HAE (2u, x, k) = e−u2
HCh

(
e2u − 1, x, k

)
.

Combining the above equation with (1.7), (1.10), (1.18) and (1.27), we have

∞∑
n=0

Hn (x)
un

n!

∞∑
n=0

2nE(−k)
n

un

n!
=

∞∑
n=0

(−1)n u2n

n!

∞∑
m=0

Ch(−k)
m (x)

∞∑
n=0

2nS 2 (n,m)
un

n!
.

Therefore
∞∑

n=0

n∑
j=0

(
n
j

)
2 jE(−k)

j Hn− j (x)
un

n!
=

∞∑
n=0

[ n
2 ]∑

j=0

n−2 j∑
m=0

(−1) j 2n−2 j

j! (n − 2 j)!
Ch(−k)

m (x) S 2 (n − 2 j,m) un.

Comparing the coefficients of un on the both sides of the above equation, after some elementary calculations, we arrive
at the desired result.

Theorem 2.14. Let n ∈ N0. Then we have

S 2 (n, k) =
2k−n

k!

n∑
m=0

k∑
j=0

(−1)k− j
(
n
m

)(
k
j

)
jmE(−k)

n−m.

Proof. By using (1.7) and (1.10), we have the following functional equation:

2k
(
et − 1

)k
HNE (t, 0, k) = k!HS (2t, k) .

From the above equation, we get

2k
∞∑

n=0

k∑
j=0

(−1)k− j
(
k
j

)
jn

tn

n!

∞∑
n=0

E(−k)
n

tn

n!
= k!

∞∑
n=0

2nS 2 (n, k)
tn

n!
.

Thus,

2k
∞∑

n=0

n∑
m=0

(
n
m

) k∑
j=0

(−1)k− j
(
k
j

)
jmE(−k)

n−m
tn

n!
= k!

∞∑
n=0

2nS 2 (n, k)
tn

n!
.

Comparing the coefficients of tn

n! on the both sides of the above equation, we arrive at the desired result.
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3. Identities for Bernoulli numbers of higher order and other special numbers

In this section, by using some known formulas, we give many novel identities and relations related to the Bernoulli
numbers of higher order, the Bernoulli and Euler numbers of negative order, the Stirling numbers, the Catalan num-
bers, the Lah numbers, the numbers B(n, k), the Bernstein basis functions, the Changhee numbers, the Daehee num-
bers, and the combinatorial numbers. Furthermore, we give some finite and infinite series representations including
aforementioned numbers and incomplete gamma function.

Theorem 3.1. Let n ∈ N0. Then we have

B(−k)
n = 2−n

n∑
j=0

(
n
j

)
B(−k)

j E(−k)
n− j . (3.1)

Proof. By using (1.5) and (1.10), we have the following functional equation:

HNB (t, 0, k) HNE (t, 0, k) = HNB (2t, 0, k) .

From the above equation, we get
∞∑

n=0

B(−k)
n

tn

n!

∞∑
n=0

E(−k)
n

tn

n!
=

∞∑
n=0

B(−k)
n

(2t)n

n!
.

Therefore
∞∑

n=0

n∑
j=0

(
n
j

)
B(−k)

j E(−k)
n− j

tn

n!
=

∞∑
n=0

2nB(−k)
n

tn

n!
.

Comparing the coefficients of tn

n! on the both sides of the above equation, we arrive at the desired result.

Combining (3.1) with (1.15), we arrive at the following corollary:

Corollary 3.2. Let n ∈ N0. Then we have

B(−k)
n =

n∑
j=0

(
n
j

)B(−k)
j B (n − j, k)

2k+n . (3.2)

With the aid of (3.2) and (1.4), we have the following corollary:

Corollary 3.3. Let n ∈ N0. Then we have

B(−k)
n

B(n+1)
n

=

n∑
j=0

B(−k)
j B (n − j, k)

2k+nB( j+1)
j B(n− j+1)

n− j

.

With the aid of (3.2) and (1.6), we also have the following corollaries:

Corollary 3.4. Let n ∈ N0. Then we have

B(−k)
n =

n∑
j=0

(
n
j

)
(

j+k
k

)
2k+n

S 2 ( j + k, k) B (n − j, k) .

Corollary 3.5. Let n, k ∈ N0. Then we have

S 2 (n + k, k) =

n∑
j=0

(
n
j

)(
n+k

k

)
2k+n

(
j+k
k

)S 2 ( j + k, k) B (n − j, k) .

Combining (1.30) with (1.4), we have the following corollary:
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Corollary 3.6. Let n ∈ N0. Then we have

B(n+1)
n =

(λ − 1)n+1

2λ2n Yn (λ) . (3.3)

In the special case of (3.3) when λ = −1, and combining the final equation with (1.31), we also arrive at the
following corollary:

Corollary 3.7. Let n ∈ N0. Then we have
B(n+1)

n = 2nChn. (3.4)

By combining (1.24) with (1.4), we arrive at the following corollary:

Corollary 3.8. Let n ∈ N0. Then we have
B(n+1)

n = (n + 1) Dn. (3.5)

By aid of (3.5) and (1.37), we also arrive at the following corollary:

Corollary 3.9. Let n ∈ N0. Then we have

B(n+1)
n =

(−1)n (n + 1) Cn

y6 (0, n; 1, 2)
.

Combining (1.34) with (1.4), we arrive at the following corollary:

Corollary 3.10. Let n ∈ N0. Then we have

B(n+1)
n =

(−2)n

λ2n Y (−n)
n (λ) . (3.6)

By aid of (3.5) and (3.6), we also arrive at the following corollary:

Corollary 3.11. Let n ∈ N0. Then we have

Y (−n)
n (λ) = (−1)n2−nλ2n (n + 1) Dn. (3.7)

Combining (1.33) with (1.4) and (1.26), we arrive at the following corollary:

Corollary 3.12. Let n, k ∈ N0. Then we have

Y (−k)
n (λ) =

λn

k!
ChkB(n+1)

n Bn,k (λ) .

With the help of the above equation and (3.5), we arrive at the following corollary:

Corollary 3.13. Let n, k ∈ N0. Then we have

Y (−k)
n (λ) =

λn

k!
(n + 1) DnChkBn,k (λ) . (3.8)

By aid of (3.8) and (1.37), we also arrive at the following corollary:

Corollary 3.14. Let n, k ∈ N0. Then we have

Y (−k)
n (λ) =

(−λ)n (n + 1) ChkCnBn,k (λ)
k!y6 (0, n; 1, 2)

.

Theorem 3.15. Let n ∈ N0. Then we have

L(2n + 1, n + 1) = −
(2n + 1)!

n!
Cn. (3.9)
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Proof. By using (1.20), we have

L(2n + 1, n + 1) = −
(2n + 1)!
(n + 1)!

(
2n
n

)
.

Combining the above equation with (1.22), we arrive at the desired result.

With the help of (3.9) and (1.37), we also arrive at the following corollary:

Corollary 3.16. Let n ∈ N0. Then we have

L(2n + 1, n + 1) =
(−1)n+1 (2n + 1)!

n!
y6 (0, n; 1, 2) Dn.

By combining (3.9) with (1.4), we have the following corollary:

Corollary 3.17. Let n ∈ N0. Then we have

L(2n + 1, n + 1) =
(−1)n B(2n+2)

2n+1 Cn

B(n+1)
n

.

By combining (3.9) with (1.24), we also have the following corollary:

Corollary 3.18. Let n ∈ N0. Then we have

L(2n + 1, n + 1) = (−1)n 2D2n+1Cn

Dn
.

3.1. Finite and infinite series representations involving special numbers and polynomials
In this subsection, we give some finite and infinite series representations which are related to the incomplete

gamma function and special numbers such as the numbers Y (−k)
n (λ), the Changhee numbers, the Daehee numbers, and

the Bernstein basis functions.

Theorem 3.19. The following sum holds true:

∞∑
n=0

(−1)n Dn −Chn

DnChn
= e(e − 2).

Proof. By using (1.26), we have
∞∑

n=0

(−1)n

Chn
=

∞∑
n=0

2n

n!
.

Hence
∞∑

n=0

(−1)n

Chn
= e2. (3.10)

And using (1.24), we obtain

∞∑
n=0

(−1)n

Dn
=

∞∑
n=0

n + 1
n!

(3.11)

=

∞∑
n=1

1
(n − 1)!

+

∞∑
n=0

1
n!

= 2e.

After removing Equation (3.10) from Equation (3.11) and after some elementary calculations, the desired result is
easily found.
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Theorem 3.20. We assume that ∣∣∣λ2
∣∣∣ < 2.

Then we have
∞∑

n=0

Y (−n)
n (λ)

Dn
=

4(
2 + λ2)2 .

Proof. By using (3.7), we have
∞∑

n=0

Y (−n)
n (λ)

Dn
=

∞∑
n=0

(−1)n (n + 1)
(
λ2

2

)n

.

Now, assuming that ∣∣∣∣∣∣λ2

2

∣∣∣∣∣∣ < 1,

we obtain
∞∑

n=0

Y (−n)
n (λ)

Dn
=
−2λ2(

2 + λ2)2 +
2

2 + λ2 .

After some elementary calculations in the above equation, proof of theorem is completed.

Theorem 3.21. Let λ , 0. Then the following identity holds true:

k∑
n=0

Y (−k)
n (λ)

Bn,k (λ)
=

(−1)ke
1
λ

2kλ

(
(−1)k (k + 1)!Γ

(
−k − 1,

1
λ

)
+ Γ

(
0,

1
λ

))
. (3.12)

Proof. By using (1.33), we have
k∑

n=0

Y (−k)
n (λ)

Bn,k (λ)
=

(−1)k

2k

k∑
n=0

(−1)n λnn!. (3.13)

Combining the above equation with (1.2), and after some elementary calculations, we obtain

k∑
n=0

Y (−k)
n (λ)

Bn,k (λ)
=

(−1)k e
1
λ

2kλ

(
(−1)k (k + 1)!Γ

(
−k − 1,

1
λ

)
+ Γ

(
0,

1
λ

))
,

where λ , 0. Thus, proof of theorem is completed.

Observe that using the well-known formula: Γ(k + 1) = k!, (k ∈ N0), Equation (3.12) reduces to the following
relation:

k∑
n=0

Y (−k)
n (λ)

Bn,k (λ)
=

e
1
λ

2kλ

(
Γ(k + 2)Γ

(
−k − 1,

1
λ

)
+ (−1)k Γ

(
0,

1
λ

))
.

Combining (3.12) with (1.4), we arrive at the following corollary:

Corollary 3.22. Let λ , 0. Then the following identity holds true:

k∑
n=0

Y (−k)
n (λ)

Bn,k (λ)
=

(−1)k e
1
λ

2kλ

(
Γ

(
0,

1
λ

)
− B(k+2)

k+1 Γ

(
−k − 1,

1
λ

))
. (3.14)

Combining (3.14) with (1.26), we arrive at the following corollary:

Corollary 3.23. Let λ , 0. Then the following identity holds true:

k∑
n=0

Y (−k)
n (λ)

Bn,k (λ)
=

e
1
λ Chk

λΓ(k + 1)

(
Γ

(
0,

1
λ

)
− B(k+2)

k+1 Γ

(
−k − 1,

1
λ

))
.
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By using (1.4), (1.24), (1.26) and (3.13), we get the following corollary:

Corollary 3.24. The following identities holds true:

k∑
n=0

Y (−k)
n (λ)

Bn,k (λ)
=

Chk

k!

k∑
n=0

(n + 1) λnDn,

k∑
n=0

Y (−k)
n (λ)

Bn,k (λ)
=

Chk

k!

k∑
n=0

(2λ)nChn,

and
k∑

n=0

Y (−k)
n (λ)

Bn,k (λ)
=

Chk

k!

k∑
n=0

λnB(n+1)
n .

4. Conclusion

Generating functions and their functional equations, trigonometric functions and their applications are used in
many diffrent areas. In this paper, we used them to investigated many families of special numbers and polynomials.
Using both the generating functions and their functional equations techniques and some known results, we obtained
many new identities, formulas, and combinatorial sums including the Genocchi polynomials of negative order, the
Euler numbers and polynomials of negative order, the Changhee numbers and polynomials of negative order, the
Bernoulli numbers of higher order, the Hermite polynomials, the Lah numbers, the central factorial numbers, the
Daehee numbers, the Bernstein basis functions, the Stirling numbers, and also the combinatorial numbers and poly-
nomials. Furthermore, we derived some finite and infinite series representations that include the gamma function, the
incomplete gamma function and aforementioned numbers. Consequently, the results of this paper have the potential
to be used and applied in numerous areas such as theory of combinatorial analysis, approximation theory, analytic
number theory, probability theory, physics, engineering, and other related areas.
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