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Abstract

In this work, the generalized distribution series which is constructed by probability mass function is considered to discuss certain
properties of classes of univalent functions. Moreover, we discuss certain connections between different subclasses of univalent
functions.
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1. Introduction

LetA represent the class of normalized analytic functions in

∆ := {z ∈ C : |z| < 1}

which is given by

A :=

 f : f (z) = z +
∑
n≥2

anzn, f (0) = 0, f ′(0) − 1 = 0, z ∈ ∆

 . (1.1)

Also, we define the class
S := { f ∈ A : f is univalent in ∆}.

Further, we consider the following two subclasses with their analytic representations:

γ −UCV∗(ς) :=
{

f ∈ A : <
(
1 +

(
1 + γeiν

) z f ′′(z)
f ′(z)

)
< ς, γ ∈ [0, ∞), ν ∈ R, ς ∈ (1,

4 + γ

3

]
, z ∈ ∆

}
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and

γ − S∗p(ς) :=
{

f ∈ A : <
((

1 + γeiν
) z f ′(z)

f (z)

)
< ς, γ ∈ [0, ∞), ν ∈ R, ς ∈ (1,

4 + γ

3

]
, z ∈ ∆

}
.

LetV ⊆ S, consisting of functions of the form

f (z) = z +
∑
n≥2

|an|zn. (1.2)

Recently, Porwal and Dixit [18] considered the following two subclasses ofV

1. γ − PUCV∗(ς) = γ −UCV∗(ς) ∩V

2. γ − PS∗p(ς) = γ − S∗p(ς) ∩V

and studied its properties. The above said classes are especially extension of the classes studied in [5, 6, 8, 20] and
[24].

In 1995, Dixit and Pal [7] defined a subclass ofA as follows (see also [25]):

R% (M, N) :=
{

f ∈ A :
∣∣∣∣∣ f ′(z) − 1
(M − N)% − N( f ′(z) − 1)

∣∣∣∣∣ < 1, 0 , % ∈ C, −1 ≤ N < M ≤ 1
}
.

Also,
R(ς) :=

{
f ∈ A : <

(
f ′(z)

)
< ς, ς ∈ (1, 2]

}
.

Probability mass (density) function ( or namely pmf) of the generalized distribution namely GD is given by

p(n) =
ψn

Ψ
, n = 0, 1, 2, · · · ,

where ψn ≥ 0, the series
∑
n≥0

ψn is convergent and

Ψ =
∑
n≥0

ψn. (1.3)

Let the series

φ(x) =
∑
n≥0

ψnxn, (1.4)

which is convergent in |x| ≤ 1 (in view of (1.3)).
In 2018, first author introduced following GD series in [16] :

Kφ(z) = z +
∑
n≥2

ψn−1

Ψ
zn. (1.5)

Also,

Kφ( f , z) = Kφ(z) ∗ f (z)

= z +
∑
n≥2

1
Ψ

anψn−1zn,

where ∗ stands for Hadamard product.
Essentially intrigued by the works which are related tohypergeometric distribution series [1, 10], Poisson distri-

bution series [2, 11, 15], generalized Bessel functions [3, 17], Wright functions [4, 21], Binomial distribution series
[9, 12], hypergeometric functions [13, 18, 22, 23], confluent hyper-geometric distribution series [19] and generalized
distribution series [16], the necessary and sufficient conditions for GD seriesKφ in γ−PUCV∗(ς) and γ−PS∗p(ς) are
discussed. Further, the inclusion relations in between the classes γ−UCV∗(ς), γ−S∗p(ς), γ−PUCV∗(ς), γ−PS∗p(ς),
R% (M, N) and R (ς) are studied.
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2. Results Related with Probability Mass Function

Now, we recall certain results which are essentially required to discuss our results.

Lemma 2.1 ([7]). If f ∈ R% (M, N) is of the form (1.1) then

|an| ≤
(M − N) |%|

n
, n ≥ 2.

The sharpness of the result holds.

Lemma 2.2 ([18]). If f ∈ A is of the form (1.1) and∑
n≥2

n(γn + n − γ − ς) |an| ≤ ς − 1, (2.1)

then f ∈ γ −UCV∗(ς).

Lemma 2.3 ([18]). If f ∈ A is of the form (1.1) and∑
n≥2

(γn + n − γ − ς) |an| ≤ ς − 1, (2.2)

then f ∈ γ − S∗p(ς).

Lemma 2.4 ([25]). If f ∈ R(ς) is of the form (1.2) then

|an| ≤
ς − 1

n
, n ≥ 2.

Lemma 2.5 ([18]). If f ∈ S is of the form (1.2) and f ∈ γ − PUCV∗(ς)

|an| ≤
ς − 1

n(γn + n − γ − ς)
, n ≥ 2.

Lemma 2.6 ([18]). If f ∈ S is of the form (1.2) and f ∈ γ − PS∗p(ς)

|an| ≤
ς − 1

γn + n − γ − ς
, n ≥ 2.

Remark 2.7. It should be worthy to note that for functions f of the form (1.2), the conditions (2.1) and (2.2) are also
necessary.

Theorem 2.8. The function Kφ defined by (1.5) is in the class γ − PUCV∗(ς) iff the condition

(1 + γ)φ′′(1) + (2γ + 3 − ς)φ′(1) ≤ (ς − 1)(2φ(1) + φ(0)) (2.3)

is satisfied.

Proof. To prove that Kφ ∈ γ − PUCV
∗(ς) from Lemma 2.2, we have to prove that∑

n≥2

n(γn + n − γ − ς)
ψn−1

Ψ
≤ ς − 1.

Now, ∑
n≥2

n(γn + n − γ − ς)
ψn−1

Ψ
=

∑
n≥2

[
(1 + γ)(n − 1)(n − 2) + (2γ + 3 − ς)(n − 1) + (1 − ς)

] ψn−1

Ψ

=
1
Ψ

∑
n≥1

[
(1 + γ)n(n − 1) + (2γ + 3 − ς)n + (1 − ς)

]
ψn

=
1
Ψ

[
(1 + γ)φ′′(1) + (2γ + 3 − ς)φ′(1) + (1 − ς)(φ(1) − φ(0))

]
.

From equation (2.3), the last expression is bounded above by ς − 1 and the proof of above theorem is established.
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The proof of the next result is much similar to the proof of the aforementioned theorem, so we state without proof.

Theorem 2.9. The function Kφ defined by (1.5) is in the class γ − PS∗p(ς) iff the condition

(1 + γ)φ′(1) ≤ (ς − 1)(2φ(1) + φ(0))

is satisfied.

Theorem 2.10. If the function f (z) given by (1.1) belongs to the class R% (M, N) and satisfies the inequality

(M − N) |%|
[
(1 + γ)φ′(1)

Ψ
− (ς − 1)

(
1 −

φ(0)
Ψ

)]
≤ ς − 1, (2.4)

then Kφ( f , z) ∈ γ −UCV∗(ς).

Proof. To prove that Kφ( f , z) ∈ γ −UCV∗(ς), by virtue of Lemma 2.1 it is enough to show that∑
n≥2

n(γn + n − γ − ς)
ψn−1

Ψ
|an| ≤ ς − 1.

Now, ∑
n≥2

n(γn + n − γ − ς)
ψn−1

Ψ
|an| =

(M − N) |%|
Ψ

∑
n≥2

(γn + n − γ − ς)ψn−1

=
(M − N) |%|

Ψ

∑
n≥2

[
(1 + γ)(n − 1) − (ς − 1)

]
ψn−1

=
(M − N) |%|

Ψ

∑
n≥1

[
(1 + γ)n − (ς − 1)

]
ψn

=
(M − N) |%|

Ψ

[
(1 + γ)φ′(1) − (ς − 1) (φ(1) − φ(0))

]
.

From equation (2.4), the last expression is bounded above by ς − 1 and the proof is established.

On putting ψn =
mn

n!
, m > 0, then we get the following result of Porwal [15].

Corollary 2.11. Let m > 0 and f ∈ R%(M, N), if for some γ(0 ≤ γ < ∞), the inequality

(M − N) |%|
[
(1 + γ)m − (ς − 1)(1 − e−m)

]
≤ ς − 1,

is satisfied then Kφ( f , z) ∈ γ −UCV∗(ς).

The proof of the next result is much similar to the proof of the aforementioned theorem, so we state without proof.

Theorem 2.12. If the function f (z) given by (1.2) belongs to the class R(ς) and satisfies the inequality

(1 + γ)φ′(1)
Ψ

− (ς − 1)
(
1 −

φ(0)
Ψ

)
≤ 1,

then Kφ( f , z) ∈ γ − PUCV∗(ς).

Theorem 2.13. If the function f (z) given by (1.1) belongs to the class R% (M, N) and satisfies the condition

(M − N) |%|
Ψ

(1 + γ)(Ψ − φ(0)) − (γ + ς)

1∫
0

φ(t)dt

 ≤ ς − 1,

then Kφ( f , z) ∈ γ − S∗p(ς).
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Proof. To prove that Kφ ∈ γ − S
∗
p(ς) by virtue of Lemma 2.1 and Lemma 2.3, it is enough to prove that∑

n≥2

(γn + n − γ − ς)
ψn−1

Ψ
|an| ≤ ς − 1.

Now, ∑
n≥2

(γn + n − γ − ς)
ψn−1

Ψ
|an| =

(M − N) |%|
Ψ

∑
n≥2

[
1 + γ −

γ + ς

n

]
ψn−1

=
(M − N) |%|

Ψ

∑
n≥1

[
1 + γ −

γ + ς

n + 1

]
ψn

=
(M − N) |%|

Ψ

(1 + γ)(φ(1) − φ(0)) − (γ + ς)

1∫
0

φ(t)dt


≤ ς − 1.

Thus, the proof of Theorem 2.13 is established.

The evidence for the following outcome is very similar to the evidence for the above-mentioned theory, so we say
without evidence.

Theorem 2.14. Let f be of the form (1.2) in the class R(ς) and the condition

(1 + γ)
(
1 −

φ(0)
Ψ

)
−

(γ + ς)
Ψ

1∫
0

φ(t)dt ≤ 1

is satisfied then Kφ( f , z) ∈ γ − PS∗p(ς).
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