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Abstract

In the paper we present the fixed point theorem for set-valued contraction mappings in generalized b-metric spaces, which gener-
alizes the famous Nadler’s fixed point theorem for such mappings in metric spaces. Also some local fixed point theorems for such
multi-valued mappings are presented.
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1. Introduction

In the paper we present some results on the existence of fixed points of a set-valued contraction mappings in a
generalized b-metric (ball metric) spaces. A b-metric space were introduced by the author first for s = 2 in [9] and
then for an arbitrary s in [10]. The results stated in this paper, generalize the famous Nadler’s theorems [14] (theorem
5), [15] (theorem 1) and [3] (theorem 1). Note that Nadler’s results were the first one for multi-valued mappings
generalizing the well known contraction principle of Banach [1]. In the paper [3] there are also results generalizing
the method of Diaz and Margolis [11] (see also [4]-[7]).

In this part we present some necessary ideas and definitions which we shall use in the paper.

Definition 1.1 (cf. [2]). A b-metric on a set X (nonempty) is a function d : X × X → [0,∞), satisfying the following
conditions:

(i) d(x, y) = 0 iff x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ⩽ s[d(x, z) + d(z, y)],

for all x, y, z ∈ X, and for some fixed s ⩾ 1. The pair (X, d) is called a b-metric space. If d is such that d : X × X →
[0,∞] then d is called a generalized b-metric (see [13], abbreviated gbms).
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Definition 1.2. A set U ⊂ (X, d), where d is a generalized b-metric in X, is said to be closed, iff for every sequence of
points xn ∈ U, n ∈ N, xn → x ∈ X (with respect to d) implies x ∈ U.
By CLX we denote the family of all nonempty closed subsets of X (see [3]).

Definition 1.3. Let

H(A, B) :=

 max
{

sup
a∈A

D(a, B), sup
b∈B

D(b, A)
}
, if the max exists,

∞, otherwise,
(1.1)

for A, B ∈ CLX.
Then H is called the generalized Hausdorff distance induced by d (see also e.g. [3]).

One has

Lemma 1.4. If a ∈ X and B ∈ CL(X, d), (X, d)-gbms, then

D(a, B) = 0⇒ a ∈ B.

Proof. If D(a, B) = 0, that is inf
ξ∈B

d(a, ξ) = 0, then for ϵn > 0, there exists ξn ∈ B such that d(a, ξn) < ϵn. Let ϵn → 0,

so d(a, ξn) → 0. Clearly {ξn} is a Cauchy sequence. Indeed, d(ξn, ξn+m) ⩽ s[d(ξn, a) + d(a, ξn+m)] → s[0 + 0]. So
ξn → ξ ∈ B, since B ∈ CL(X, d).
But

d(a, ξ) ⩽ s[d(a, ξn) + d(ξn, ξ)]→ s[0 + 0].

Therefore,
[d(a, ξ)→ 0]⇒ a = ξ ∈ B,

which means that a ∈ B.
Clearly, a ∈ B⇒ D(a, B) = 0.

Lemma 1.5. If (X, d) is a generalized b-metric space (gbms), then H is a generalized b-metric (gbm) for A, B ∈
CL(X, d) :

H(A, B) = 0⇔ A = B, (1.2)

H(A, B) = H(B, A), (1.3)

H(A, B) ⩽ s[H(A,U) + H(U, B)], (1.4)

for all A, B,U ∈ CL(X, d). Except that H may have ”infinite values” (see [3]).

Proof. Let for A, B ∈ CL(X, d)

a) H(A, B) < ∞, H(A, B) = sup
a∈A

D(a, B).

Then one has

H(A, B) = sup
a∈A

D(A, B) ⩽ sup
a∈A

{
inf
b∈B

d(a, b)
}

⩽ sup
a∈A

inf
b∈B

{
s[d(a, ξ) + d(ξ, b)

}
,
(
ξ ∈ U ∈ CL(X, d)

)
⩽ s sup

a∈A

{
d(a, ξ) + d(ξ, b)

}
⩽ s sup

a∈A

{
d(a, ξ) + D(U, b)

}
⩽ s sup

a∈A

{
D(a,U) + D(U, b)

}
⩽ s[sup

a∈A
D(a,U) + D(U, b)] ⩽ s[H(A,U) + H(U, B)],
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i.e.

H(A, B) ⩽ s[H(A,U) + H(U, B)], A, B,U ∈ CL(X, d).

If
b) H(A, B) = sup

b∈B
D(b, A),

the proof is the same.
For the equation (1.2): by Lemma 1.4 and Definition 1.3,

H(A, B) = 0⇒ sup
a∈A

D(a, B) = 0⇒ D(a, B) = 0⇒ a ∈ B⇒ A ⊂ B.

Similarly, B ⊂ A, i.e. A = B.
Conversely, if A = B⇒ H(A, B) = 0 by the definition. The equation (1.3) is obvious.

Let’s note the following remark (see also [3]). Generalized b-metric can be reduce to b-metric by taking the
minimum of the generalized b-metric and the real number 1. Such new b-metric preserves the topology but changes
the Lipschitz structure of the of the generalized b-metric. Because we work with contraction mappings, we can not
do such operation.

Let’s also make the following Lemma.

Lemma 1.6. Let (X, d) be a generalized b-metric on X.
Let

(iv) ξ(x, y) := min[d(x, y), 1] =
{

d(x, y), d(x, y) < 1,
1, d(x, y) ⩾ 1.

The function (iv) is a b-metric on X.

Proof. First of all, we present the proof in the case
Case I) d(x, y) > 1.
For d(x, y) > 1, one has ξ(x, y) = 1. Also

d(x, y) ⩽ s[d(x, z) + d(z, y)], x, y, z ∈ X, s ⩾ 1.

Assume that d(x, z) < 1, d(z, y) < 1, then ξ(x, z) = d(x, z), ξ(z, y) = d(z, y) and one has

ξ(x, y) = 1 < d(x, y) ⩽ s[d(x, z) + d(z, y)]
⩽ s[ξ(x, z) + ξ(z, y)].

If d(x, z) ⩾ 1, then ξ(x, z) = 1, and

ξ(x, y) ⩽ 1 ⩽ s ⩽ s[1 + ξ(z, y)] ⩽ s[ξ(x, z) + ξ(z, y)].

Case II) d(x, y) < 1.
Then ξ(x, y) = d(x, y). One has

ξ(x, y) = d(x, y) ⩽ s[d(x, z) + d(z, y)].

Moreover, if d(z, y) < 1, then ξ(z, y) = d(z, y), and

ξ(x, y) ⩽ s[d(x, z) + d(z, y)] ⩽ s[ξ(x, z) + ξ(z, y)].

If d(z, y) ⩾ 1, then ξ(z, y) = d(z, y) = 1 and hence

ξ(x, y) ⩽ s[d(x, z) + d(z, y)] ⩽ s[ξ(x, z) + ξ(z, y)],

so the inequality
ξ(x, y) ⩽ s[ξ(x, z) + ξ(z, y)],

holds true.
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Lemma 1.7. For every a ∈ A, A ∈ CL(X, d) and every ϵ > 0, there exists b ∈ B; B ∈ CL(X, d) such that

d(a, b) ⩽ H(A, B) + ϵ. (1.5)

Proof. Let

H(A, B) < ∞, H(A, B) = sup
a∈A

D(a, B).

Then
sup
a∈A

D(a, B) ⩽ H(A, B) ⩽ H(A, B) + ϵ.

Therefore there exists b ∈ B such that
d(a, b) ⩽ H(A, B) + ϵ.

If not, so for every b ∈ B, d(a, b) > H(A, B) + ϵ, ϵ-fixed, and hence

inf
b∈B

d(a, b) = D(a, B) ⩾ H(A, B) + ϵ.

Hence
sup
a∈A

D(a, B) ⩾ H(A, B) + ϵ,

and consequently,
H(A, B) = sup

a∈A
D(a, b) ⩾ H(A, B) + ϵ,

what is impossible.

Definition 1.8 (cf. [3]). A function T : X → CL(X) is said to be a multi-valued contraction mapping (mvcm) iff there
exists a real number 0 ⩽ λ < 1 such that

H[T (x),T (y)] ⩽ λd(x, y), x, y ∈ X, d(x, y) < ∞.

Similarly, a mapping T : X → CL(X) is said to be an (λ, ϵ)-uniformly locally contractive multi-valued mapping,
where ϵ > 0 and 0 ⩽ λ < 1, iff

H[T (x),T (y)] ⩽ λd(x, y), x, y ∈ X, d(x, y) < ϵ.

Definition 1.9 (cf. [3]). For a generalized b-metric space (X, d), x0 ∈ X, and T : X → CL(X) a sequence {xn}
∞
n=1,

xn ∈ X, n ∈ N, is said to be an iterative sequence of T at x0, iff xn+1 ∈ T (xn) for n ∈ N0. A point x ∈ X is called a fixed
point of T iff x ∈ T (x).

Definition 1.10 (cf. [3, 8]). A generalized b-metric space (X, d) is said to be ϵ-chainable, ϵ > 0, iff for every x, y ∈ X,
d(x, y) < ∞, there exists an ϵ-chain from x to y, i.e. a finite set of points x0 = x, x1..., xn = y such that d(xk−1, xk) < ϵ
for k = 1, 2, ..., n.
The following interesting results have been proved by Covitz and Nadler, Jr.

Proposition 1.11 (cf. [3]). Let (X, d) be a generalized complete metric space, and let x0 ∈ X. If F : X → CL(X) is an
(λ, ϵ)-uniformly locally contrative multi-valued mapping, then the following alternative holds: either
(A) for each iterative sequence {xi}

∞
i=1 of F at x0, d(xi−1, xi) ⩾ ϵ for each i ∈ N, or

(B) there exists an iterative sequence {xi}
∞
i=1 of F at x0 such that {xi}

∞
i=1 converges to a fixed point of F.

Proposition 1.12 (cf. [14]). Let (X, d) be a complete metric space and let x0 ∈ X. If F : X → CL(X) is a mvcm, then
there exists an iterative sequence {xi}

∞
i=1 of F at x0 such that {xi}

∞
i=1 converges to a fixed point of F.

As usual, by N, N0 we denote the set of all natural numbers or the set of all natural numbers with zero, respectively.
By ” ∼ ” we denote an equivalence relation in X.
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2. Main results

Now we prove the following

Theorem 2.1. Let (X, d) be a generalized complete b-metric space and let x0 ∈ X. If T : X → CL(X, d) is a (λ, ϵ)-
uniformly locally contractive multi-valued mapping, i.e.

H[T (x),T (y)] ⩽ λd(x, y), x, y ∈ X, d(x, y) < ϵ, (2.1)

and
0 ⩽ λ < 1, (2.2)

then the following alterative holds: either
(I) for each iterative sequence {xn}

∞
n=1 of T at x0, d(xn−1, xn) ⩾ ϵ for n ∈ N, or

(II) there exists an iterative sequence {xn}
∞
n=1 of T at x0 such that xn → u ∈ X, and u ∈ T (u).

Proof. Assume that (I) does not hold. Then there exists xm ∈ T (xm−1), xm−1, xm ∈ X, and d(xm−1, xm) < ϵ for some
m ∈ N. Hence

H[T (xm−1),T (xm)] ⩽ λd(xm−1, xm) < λϵ < ϵ.

Since xm ∈ T (xm−1), there exists an xm+1 ∈ ϵT (xm) such that, by Lemma 1.7,

d(xm, xm+1) ⩽ H[T (xm−1),T (xm)] + λϵ,

where ϵ > 0. Let ϵ < min[ϵ − λϵ, 1].
Therefore

d(xm, xm+1) < λϵ + λϵ < λ(ϵ + 1).

We show that there exists a sequence (for T) such that:

(1)
xm+k+1 ∈ T (xm+k),

(2)
d(xm+k, xm+k+1) < ϵ, (2.3)

(3)
d(xm+k, xm+k+1) < λk + kλk−1ϵ,

for k ∈ N. Assume that the equation (2.3) is true for k ∈ N. By induction, for k + 1 one has: there exists an
xm+k+2 ∈ T (xm+k+1) such that (see Lemma 1.6)

d(xm+k+1, xm+k+2) ⩽ H[T (xm+k),T (xm+k+1)] + λkϵ

⩽ λd(xm+k, xm+k+1) + λkϵ

⩽ λ[λk + kλk−1ϵ] + λkϵ

⩽ λk+1 + (k + 1)ϵλk,

i.e.
d(xm+k+1, xm+k+2) ⩽ λk+1 + (k + 1)ϵλk,

that is the equation (2.3) for k + 1. Clearly,

d(xm+k+1, xm+k+2) ⩽ λϵ + ϵ < ϵ.

This means that (1), (2), (3) are true for all k ∈ N.
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Now we verify that {xn} is a Cauchy sequence in (X, d). From Paluszyński, Stempak [16], for x, y ∈ X, d(x, y) < ∞,
let

dϵ(x, y) := inf


n∑

i=1
dp(xi−1, xi) : x = x0, x1, ..., xn = y,

∞, ifd(x, y) = ∞,
(2.4)

where 0 < p ⩽ 1, is such that
(2s)p = 2.

Evidently, dϵ is symmetric, satisfies the triangle inequality and dϵ ⩽ dp. They also proved that dϵ is a metric and
dϵ ∼ dp. Note that p is such that (2s)p = 2. For n, r ∈ N, by the equation (2.4) one has

dϵ(xn, xn+r) ⩽ dϵ(xn, xn+r) + . . . + dϵ(xn(r−1)xn+r)
⩽ dp(xn, xn+1) + ... + dp(xn(r−1), xn+r)

⩽
∞∑

i=n

dp(xi, xi+1)

⩽
∞∑

i=n

λp(i+1)(ϵ + i + 1)p.

Put λp = ξ < 1, so

dϵ(xn, xn+r) ⩽
∞∑

i=n

ξi+1(ϵ + i + 1)

⩽ (1 − ξ)−1ξn+1 +

∞∑
i=n

(i + 1)ξi+1

⩽ (1 − ξ)−2(n + 4)ξn+1.

Therefore, {xn} is a Cauchy sequence in (X, dϵ) so {xn} is a Cauchy sequence in (X, d) since dϵ ∼ dp (for details see
Jung [12] and [2]). Consequently, xn → u as n→ ∞ in (X, d), but (X, d) is complete, so u ∈ X.

Finally we prove that u ∈ T (a). Indeed, for n sufficiently large, we have

D(uT (u)) = inf
ξ∈T (u)

d(u, ξ) ⩽ d(u, ξ)

⩽ s[d(u, xn+1) + d(xn+1, ξ)]
⩽ s[d(u, xn+1) + D(xn+1,T (u))]
⩽ s[d(u, xn+1) + H(T (xn),T (u))]
⩽ s[d(u, xn+1) + λd(xn, u)]→ s[0 + 0] = 0, n→ ∞.

Hence D(u,T (u)) = 0, but since T (u) is closed, so u ∈ T (u).

Next result is the following

Theorem 2.2. Let (X, d) be a complete ϵ-chainable generalized b-metric space and let x0 ∈ X. If T : X → CL(X, d)
is a (λ, ϵ)-uniformly locally contractive multi-valued mapping, then the following alternative holds: either
(III) for each iterative sequence {xn}

∞
n=1 of T at x0, d(xn−1, xn) = ∞ for n ∈ N;

or
(IV) there exists an iterative sequence {xn}

∞
n=1 of T at x0 such that xn → x as n→ ∞, x ∈ X and x ∈ T (x).

Proof. Suppose (III) does not hold. By Paluszyński and Stempak [16], define for x, y ∈ X,

dϵ(x, y) :=


inf

n∑
i=1

dp(xi−1, xi), x0 = x, x1, . . . , xn = y,

d(xi−1, xi) < ϵ for i = 1, . . . , n,
∞, if d(x, y) = ∞,
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where (2s)p = 2.
Then (X, dϵ) is a generalized complete metric space, dϵ ∼ dp, 0 < p ⩽ 1 ( one can repeat the proof presented by
Paluszyński and Stempak for ϵ-chainable b-metric space). Let Hϵ be the generalized Hausdorff metric on CL(X, dϵ)
induced by dϵ .
We can verify that CL(X, d) = CL(X, dϵ). Indeed, if U ∈ CL(X, d), then by the Definition 1.2, one has [xn ∈ U and

xn
d
→ x ∈ X] ⇒ x ∈ U, so as well [xn ∈ U, xn

dϵ
→ x] ⇒ x ∈ U and consequently CL(X, d) ⊂ CL(X, dϵ). Conversely is

the same, since dϵ ∼ dp.
Now we want to prove that

Hϵ(A, B) ⩽ HP(A, B), A, B ∈ CL(X).

Let Hϵ(A, B) = sup
a∈A

Dϵ(a, B). Then one has for Hϵ(A, B) < ∞,

Hϵ(A, B) = sup
a∈A

Dϵ(a, b) ⩽ sup
a∈A
{inf
b∈B

dϵ(a, b)}

⩽ sup
a∈A

inf
b∈B

dp(a, b) ⩽ sup
a∈A
{inf
b∈B

d(a, b)}p

⩽ sup
a∈A

Dp(a, B) ⩽ [sup
a∈A

D(a, B)]p ⩽ Hp(A, B),

i.e.
Hϵ(A, B) ⩽ Hp(A, B), A, B ∈ CL(X, d) = CL(X, dϵ).

Now let x, z ∈ X and d(x, z) < ∞. If x0 = x, x1, . . . , xn = z, then

Hϵ[T (x),T (z)] ⩽
n∑

i=1

Hϵ[T (xi−1),T (xi)] ⩽
n∑

i=1

Hp[T (xi−1),T (xi)]

⩽
n∑

i=1

[λd(xi−1, xi)]P ⩽ λp
n∑

i=1

dp(xi−1, xi).

Since the inequality between the first and last terms of the above inequalities holds for all ϵ-chains x = x0, x1, . . . , xn =

z, n ∈ N, connecting x and z, it follows
Hϵ[T (x),T (z)] ⩽ λpdϵ(x, z) (2.5)

for all x, z ∈ X, d(x, z) < ∞, where 0 ⩽ λp < 1.
Clearly T is a (λp, ϵ)-uniformly locally contractive multi-valued mapping with dϵ , Hϵ , and ϵ > 0 such that d(xn−1, xn) <
ϵ, which follows by the assumption that (III) does not hold. Therefore the sequence {xn} starting from xn−1, does not
satisfy the condition (I) (see the proof of Theorem 2.1). So our statement (IV) follows directly from (II) of Theorem
2.1.

Remark 2.3. In the proofs of Theorem 2.1 and Theorem 2.2 we utilize some ideas contained in [3].

Remark 2.4. If (X, d) is a metric space, then from Theorem 2.1 we get the famous Nadler’s fixed point theorem for
multi-valued contraction mappings (see [2, 3, 8]).

Remark 2.5. If (X, d) is an ϵ-chainable metric space, we get from Theorem 2.2 Corollary 2 of [3].
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