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Abstract
Molecular and spectral graph theory deals with modeling the molecular structure by a graph and to obtain some numerical value
by studying this graph by mathematical methods to comment on physico-chemical properties of the molecular structure under
investigation. One of the main tools to do this is Topological graph indices. There are thousands of different indices in Mathematics
and Chemistry. In this research, we compute R1(G, x), R2(G, x) of square snake graphs and also R01(G), R02(G) of square snake
graphs.
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1. Introduction

In this research, we consider all graphs are finite, simple and connected. Let |V | = n and |E| = m denote the
number of vertices and edges of a graph G. The distance d(u, v) or dG(u, v) is the length of the shortest path between
u and v in G. Let dG(v) denotes the number of vertices that are adjacent to v. Let ∆(G) denotes the maximum degree
and δ(G) denotes the minimum degree of the vertices of G. For any vertex v ∈ G, rG(v) = ∆(G) + δ(G) − dG(v).

Recently, a wide range of vertices-degree-based graph invariants (Topological indices) have been introduced and
extensively studied in [QSPRs/QSARs] study. The topological indices of graphs have wide area of applications
establishing correlations between the structure of a molecular compound and its physic-chemical activity. The main
goal of a topological graph index is to assign a numerical value to each chemical structure while keeping it as selective
as possible. Various indices have been utilized to obtain necessary information about a graph molecular structure and
to correlate various physico-chemical and biological aspects.

Snake graphs are planar bipartite graphs with finite or infinite one- or two-dimensional repetitions of some geo-
metric shape. They are studied in different contexts in mathematics and other sciences. Graph Labeling is an important
subject in graph theory where graphs are used to model real life situations. The Zagreb indices are the largest class of
topological graph indices they have been defined and studied in [10, 11]. Some important Zagreb indices are defined
and computed in [18]-[20]. The Randic index, the most well-known indices were studied in [15]. In [14], some
topological indices of pentagonal chains are calculated. In [5]-[7], R1(G) and R2(G) of a graph G are defined as:
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R1(G) =
∑

uv∈E(G)

[rG(u) + rG(v)],

R2(G) =
∑

uv∈E(G)

[rG(u).rG(v)].

R1(G, x) and R2(G, x) are defined as

R1(G, x) =
∑

uv∈E(G)

xrG(u)+rG(v),

R2(G, x) =
∑

uv∈E(G)

xrG(u).rG(v).

In [5]-[7], the first and third Revan vertex index of a graph G is defined as

R01(G) =
∑

u∈v(G)

rG(u)2.

R3(G) =
∑

uv∈E(G)

|rG(u) − rG(v)| .

The first and third Revan vertex polynomials are defined as

R01(G, x) =
∑

u∈V(G)

xrG(u)2
.

R3(G, x) =
∑

uv∈E(G)

x|rG(u)−rG(v)|.

In [5]-[7], several other indices were studied. Also, many topological indices were studied (see [4, 9, 12]). In this
research, we introduce and compute some Revan indices and their polynomials of the Square Snake graph C1

4,k.

2. Results for square snake graphs C1
4,k

By replacing every edge of a path Pn by a square C4 we obtain a Square Snake Graph C1
4,k which is depicted in the

Figure 1.

Figure 1. Square snake graph C1
4,k

For the square snake graph C1
4,k, we noticed |V(G)| = 3k + 1 and |E(G)| = 4k. We find that the vertex degrees are

either 2 and 4 in C1
4,k.

In Table 1, the vertex partition of C1
4,k is given:
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di ♯ di

2 2k + 2
4 k − 1

Table 1. Vertex partition of C1
4,k

Also, in Table 2, the edge partition of C1
4,k is shown:

(di, d j) ♯ (di, d j)
(2,2) 4
(2,4) 4(k − 1)

Table 2. Edge partition of C1
4,k

In the following theorem, we compute R01(C1
4,k) and R01(C1

4,k, x) of the square snake graph C1
4,k by considering the

above vertex and edge partitions.

Theorem 2.1. Let G be the square snake graph C1
4,k. Then we have the following results:

R01(C1
4,k) = 36k + 28,

R01(C1
4,k, x) = (2k + 2)x16 + (k − 1)x4.

Proof. Let G be the square snake graph C1
4,k and |V(G)| = 3k + 1.Thus, we have ∆(G) = 4 , δ(G) = 2. The vertex

V(C1
4,k) can be partitioned as,

V2 = {u ∈ V(G) | dG(u) = 2}, |V2| = 2k + 2,
V4 = {u ∈ V(G) | dG(u) = 4}, |V4| = k − 1.

Clearly, we find ∆(G) + δ(G) = 6. Thus, rG(u) = 6 − dG(u).
Only two types of Revan vertices are found in the square snake graph C1

4,k:

Vr4 = {u ∈ V(G) | rG(u) = 4} , |Vr4| = 2k + 2,
Vr2 = {u ∈ V(G) | rG(u) = 2}, |Vr2| = k − 1.

1) To compute R01(C1
4,k), we have the following,

R01(G) =
∑
u∈Vr4

rG(u)2 +
∑
u∈Vr2

rG(u)2

= (2k + 2) × 42 + (k − 1) × 22

= 36k + 28.

2) To compute R01(C1
4,k, x), we have the following,

R01(G, x) =
∑
u∈Vr4

xrG(u)2
+
∑
u∈Vr2

xrG(u)2

= (2k + 2) × x42
+ (k − 1) × x22

= (2k + 2) × x16 + (k − 1) × x4.
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We compute the values of R1(C1
4,k), R2(C1

4,k), R3(C1
4,k) for square snake graph network.

Theorem 2.2. Let C1
4,k be the square snake graph. Then

R1(C1
4,k) = 8(3k + 1),

R2(C1
4,k) = 32(k + 1),

R3(C1
4,k) = 8(k − 1).

Proof. Let G be the square snake graph C1
4,k and |E(G)| = 4k. Then, we have the following results,

E2,2 = {u ∈ E(G) | dG(u) = dG(v) = 2}, |E2,2| = 4,
E2,4 = {u ∈ V(G) | dG(u) = dG(v) = 4}, |E2,4| = 4(k − 1).

Clearly, we have ∆(G) = 4, δ(G) = 2. Thus we have rG(u) = 6 − dG(u). Only two types of Revan edges are found in
the square snake graph C1

4,k:

RE4,4 = {uv ∈ E(G) | rG(u) = 4, rG(v) = 4}, |RE4,4| = 4,
RE4,2 = {uv ∈ V(G) | rG(u) = 4, rG(v) = 2}, |RE4,2| = 4(k − 1).

1) To compute R1(C1
4,k) we have the following,

R1(G) =
∑

uv∈E(G)

[rG(u) + rG(v)]

=
∑
RE4,4

[rG(u) + rG(v)] +
∑
RE4,2

[rG(u) + rG(v)]

= 4(4 + 4) + 4(k − 1)(4 + 2)
= 8(3k + 1).

2) To compute R2(C1
4,k) we have the following,

R2(G) =
∑

uv∈E(G)

[rG(u) × rG(v)]

=
∑
RE4,4

[rG(u) × rG(v)] +
∑
RE4,2

[rG(u) × rG(v)]

= 4(16) + 4(k − 1)(8)
= 32(k + 1).

3) To compute R3(C1
4,k) we have the following,

R3(G) =
∑

uv∈E(G)

[rG(u) − rG(v)]

=
∑
RE4,4

|rG(u) − rG(v)| +
∑
RE4,2

|rG(u) × rG(v)|

= 8(k − 1).

In the following theorem, for square snake graph networks C1
4,k we compute the values of R1(C1

4,k, x), R2(C1
4,k, x),

R3(C1
4,k, x) for square snake graph networks.
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Theorem 2.3. Let C1
4,k be the square snake graph network. Then

R1(C1
4,k, x) = 4x8 + 4(k − 1)x6,

R2(C1
4,k, x) = 4x16 + 4(k − 1)x8,

R3(C1
4,k, x) = 4(k − 1)x2.

Proof. 1) Using the Revan edge set partition of the square snake graph networks C1
4,k and applying the formula of

R1(G, x) of G we have,

R1(C1
4,k, x) =

∑
RE4,4

xrG(u)+rG(v) +
∑
RE4,2

xrG(u)+rG(v)

= 4x4+4 + 4(k − 1)x4+2

= 4x8 + 4(k − 1)x6.

2) Using the Revan edge set partition of the square snake graph networks C1
4,k and applying the formula of R2(G, x)

of G we have,

R2(C1
4,k, x) =

∑
RE4,4

xrG(u)×rG(v) +
∑
RE4,2

xrG(u)×rG(v)

= 4x16 + 4(k − 1)x8.

3) Using the Revan edge set partition of the square snake graph networks C1
4,k and applying the formula of R3(G, x)

of G we have,

R3(C1
4,k, x) =

∑
RE4,4

x[rG(u)−rG(v)] +
∑
RE4,2

x[rG(u)−rG(v)]

= 4(k − 1)x2.

3. Conclusion

In this research work, we considered a special graph network structures C1
4,k [square snake graphs] and computed

the Revan indices and their polynomials.
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