**Title:** SOME ALGEBRAIC PROPERTIES OVER THE GENERALIZED GENERAL PRODUCT OBTAINED BY MONOIDS AND GROUPS

**Montes Taurus J. Pure Appl. Math.** / ISSN: 2687-4814

**Article ID:** MTJPAM-D-19-00003; **Volume 1 / Issue 1 / Year 2019**, Pages 96-106

**Document Type:** Research Paper

**Author(s):** Suha A. Wazzan ^{a}

^{a}Department of Mathematics, KAU King Abdulaziz University, Science Faculty, Girls Campus, 21589, Jeddah-Saudi Arabia

Received: 9 July 2019, Accepted: 4 September 2019, Available online: 28 November 2019.

**Corresponding Author:** Suha A. Wazzan (Email address: swazzan@kau.edu.sa)

**Full Text:** PDF

**Abstract**

Suppose *A* and *B* be arbitrary monoids. In [2], it has been recently defined a new consequence of the general product *A*^{⊕B} _{δ}⋈_{ψ} *B*^{⊕A} under the name of the generalized general product, and then has been given a presentation for it. In this paper we give some algebraic properties of the generalized general product obtained by some certain monoids and groups.

**Keywords:** General product, Left cancellative monoids, Bands, Equidivisible, Orthodox

**References:**

- G. Baumslag,
*Wreath products and finitely presented groups*, Math. Z.**75**, 22-28, 1961. - A.S. Cevik, S.A. Wazzan, F. Ates,
*The generalized of general products of monoids*. (In review). - N.D. Gilbert, S. Wazzan,
*Zappa-Szép products of bands and groups*, Semigroup Forum**77**, 438-207, 2008. - J.B. Hickey, M.V. Lawson,
*Unit regular monoids*, Proc. Edinburgh Math. Soc.**127A**, 127-144, 1997. - J.M. Howie,
*Fundamentals of semigroups theory*, Clarendon Press, Oxford, 1995. - J.M. Howie, N. Ruskuk,
*Construction and presentations for monoids*, Comm. in Alg.**22 (15)**, 6209-6224, 1994. - M. Kunzo,
*Zappa Products*, Acta Math. Hung.**41**, 225-239, 1983. - T.G. Lavers,
*Presentations of general products of monoids*, Journal of Algebra**204**, 733-741, 1998. - M.V. Lawson,
*Inverse semigroups : The theory of partial symmetries*, World Scientific, 1998. - M.V. Lawson,
*A correspondence between a class of monoids and self-similar group actions I*, Semigroup Forum**76**, 489-517, 2008. - M.V. Lawson,
*A correspondence between a class of monoids and self-similar group actions II*, Inter.J. Algeb. Comp.**25 (04)**, 633-668, 2015. - R.B. McFadden,
*Unit-regular orthodox semigroups*, Glasgow Math. J.**25**, 229-40, 1984. - J.D.P. Meldrum,
*Wreath products of groups and semigroups*, Longman, Harlow, 1995. - V. Nekrashevych,
*Self-similar groups*,**117**, American Mathematical Soc., 2005. - S. Oguz, E.G. Karpuz,
*Some semigroup classes and congruences on Bruck-Reilly and generalized Bruck-Reilly ⋆-extensions of monoids*, Asian-European J. Math.**8 (4)**, 1550075 (11pages), 2015. - N.U. Ozalan, A.S. Cevik, E.G. Karpuz,
*A new semigroup obtained via known ones*, Asian-European J. Math.**13 (1)**, 2040008 (13 pages), 2020. - J. Szép,
*On factorisable, not simple groups*, Acta Univ. Szeged. Sect. Sci. Math.**13**, 239-241, 1950. - G. Zappa,
*Sulla construzione dei gruppi prodotto di due sottogruppi permutabili tra loro*, Atti Secondo Congresso Un. Mat. Ital. Bologna, 119-125, 1940.