Article ID: MTJPAM-D-20-00021

Title: Fractional Derivatives of Logarithmic Singular Functions and Applications to Special Functions


Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-20-00021; Volume 3 / Issue 1 / Year 2021, Pages 7-37

Document Type: Research Paper

Author(s): Richard Tremblay a

aDépartement d’Informatique et Mathématique, Université du Québec à Chicoutimi, Chicoutimi, Qué., Canada G7H 2B1

Received: 26 July 2020, Accepted: 14 October 2020, Available online: 7 January 2021.

Corresponding Author: Richard Tremblay (Email address: rtrembla@uqac.ca)

Full Text: PDF


Abstract

In 1974, Lavoie, Tremblay and Osler (Fundamental properties of fractional derivatives via Pochhammer integrals in ‘Fractional calculus and its applications’, Lecture Notes in Mathematics No.457, Springer-Verlag, (1974), 323-356) introduced a Pochhammer integral representation in the complex plane for the fractional derivative $D_{z}^{\alpha}\, z^{p} (\ln \ z)^{\delta} f(z)$ where $\delta = 0$ or 1. In the same vein, we present integral representations for the fractional derivative of functions with multiple branch-points (complex power, logarithm and their product) $D_{z-z_{0}}^{\alpha}U_{ \delta,\, \theta; \, p, \, q} \, (z-z_{0}, w-z)\big|_{w=z}^{*}$ where $U_{\delta,\, \theta; \, p, \, q} \, (z-z_{0}, w-z)= f(z-z_{0},w-z)(z-z_{0})^{p}(w-z)^{q} \ [\ln(z – z_{0}) ]^{\delta} \[\ln(w-z)]^{\theta}$ for value $ \delta, \, \theta = 0$ or 1 using a Pochhammer contour integral enclosing the singularity points $z_{0}$, $z$ and $w$. The symbol (*) indicates that $w \rightarrow z$ inside the Pochhammer contour used for the representation. The transformation formula for the fractional operator $D_{z-z_{0}}^{\alpha}U_{ \delta,\, \theta; \, p+r, \, q}\,(z-z_{0},w-z)\big|_{w=z}^{*}=\frac{\Gamma(1+p)}{\Gamma(-\alpha)} D_{z-z_{0}^{}}^{-p-1} U_{ \delta,\,\theta; r; \, q-\alpha-1} \, (w-z,z-z_{0})\big|_{w=z}^{*}$ is derived. Some applications to special functions are given; in particular, a new form of the Leibniz rule is obtained. Another application includes many summation formulas involving the orthogonal polynomials and deduced from the Christoffel-Darboux identity for orthogonal polynomials.

Keywords: Fractional derivatives, Pochhammer contour, Transformation formulas, Special functions, Leibniz rules, Christoffel-Darboux formula, Logarithmic singular function

References:
  1. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover publications, Inc, New York, 1965.
  2. P. Agarwal, A. Jain and T. Mansour, Further extended caputo fractional derivative operator and its applications, Russian J. Math. Phys. 24, 415–425, 2017.
  3. P. Appell and J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques: Polynômes d’Hermite, Gauthier-Villars, Paris, 1926.
  4. L. M. B. C. Campos, On a concept of derivative of complex order with application to special functions, IMA J. Appl. Math. 33, 109–133, 1984.
  5. L. M. B. C. Campos, On rules of derivation with complex order for analytic and branched functions, Portugaliae Mathematica 43 (3), 347–376, 1985-86.
  6. A. Erdelyi, An integral equation involving Legendre polynomials, SIAM J. Appl. Math. 12, 15–30, 1964.
  7. A. Erdelyi, Axially symetric potentials and fractional integration, SIAM J. Appl. Math. 13, 216–228, 1965.
  8. A. Erdelyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher Transcendental Functions, Vol. 3, McGraw-Hill, New York, 1953.
  9. A. Erdelyi, W. Magnus, F. Oberhettinger and F. Tricomi, Tables of Integral Transforms, Vol. 2, McGraw-Hill, New York, 1953.
  10. B. J. Fugère, S. Gaboury and R. Tremblay, Leibniz rules and integral analogues for fractional derivatives via a new transformation formula, Bul. Math. Anal. Appl. 4 (2), 72–82, 2012.
  11. S. Gaboury and R. Tremblay and B. J. Fugère, Some relations involving a generalized fractional derivative operator, J. Inequal. Appl. 167, 1–10, 2013.
  12. S. Gaboury and R. Tremblay, A note on some new series of special functions, Integral Transforms Spec. Funct. 25 (5), 336–343, 2014.
  13. S. Gaboury and R. Tremblay, An expansion theorem involving H-function of several complex variables, Int. J. Anal. 2013, Article ID 353547, 1–7, 2013.
  14. S. Gaboury and R. Tremblay, Summation formula obtained by means of the generalized chain rule for fractional derivatives, J. Complex. Anal. 2014, Article ID 820951, 1–7, 2014.
  15. I. M. Gel’fand and G. E. Shilov, Generalized Functions, Vol. 1, Academic Press, New York and London, 1964.
  16. G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals, Proc. London Math. Soc. Ser. 24 (2), 37–41, 1925.
  17. G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. I., Math. Z. 27 (4), 565–606, 1928.
  18. G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II., Math. Z. 34, 403–439, 1932.
  19. , The Use of Fractional Integral Operators for Solving Nonhomogeneous Differential Equations, Document D1-82-0677, Boeing Scientific Research Laboratories, Seattle, Wash., 1967.
  20. J.-L. Lavoie, T. J. Osler and R. Tremblay, Fundamental properties of fractional derivatives via Pochhammer integrals in ’Fractional calculus and its applications’, Lecture Notes in Mathematics, No. 457, Springer-Verlag, Berlin-Heidelberg-New York, 323–356, 1974.
  21. J.-L. Lavoie, T. J. Osler and R. Tremblay, Fractional derivatives and special functions, SIAM Rev. 18, 240–268, 1976.
  22. P. A. Nekrassov, Generalized differentiation, Mat. Sb. 14, 45–168, 1888.
  23. K. Nishimoto, Fractional Calculus, Vols. I, II and III, Descartes Press, Koriyama, Japan, 1984, 1985 and 1989.
  24. K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York and London, 1974.
  25. T. J. Osler, Leibniz Rule, the Chain Rule and Taylor’s Theorem for Fractional Derivatives, Doctoral thesis, New York University, New York, 1970.
  26. T. J. Osler, Leibniz rule for fractional derivatives and an application to infinite series, SIAM J. Appl. Math. 18, 658–674, 1970.
  27. T. J. Osler, Fractional derivatives of a Composite function, SIAM J. Math. Anal. 1, 288–293, 1970.
  28. T. J. Osler, Fractional derivatives and Leibniz rule, Amer. Math. Monthly. 78, 645–649, 1971.
  29. T. J. Osler, Taylor’s series generalized for fractional derivatives and applications, SIAM J. Math. Anal. 2, 37–48, 1971.
  30. T. J. Osler, A further extension of the Leibniz rule to fractional derivatives and it’s relation to Parseval’s formula, SIAM J. Math. Anal. 3, 1–16, 1972.
  31. T. J. Osler, An integral analog of the Leibniz rule, SIAM J. Math. Anal. 26 (120), 903–915, 1972.
  32. T. J. Osler, An integral analog of Taylor’s series and its use in computing Fourier transform, Math. Compt. 26, 449–460, 1972.
  33. T. J. Osler, A correction to Leibniz rule for fractional derivatives, SIAM J. Math. Anal. 4, 456–459, 1973.
  34. E. L. Post, Generalized diffrrentiation, Trans. Amer. Math. Soc. 32, 723–781, 1930.
  35. E. D. Rainville, Special Functions, Macmillan Company, New York, 1960.
  36. M. Riesz, L’intégral de Riemann-Liouville et le probléme de Cauchy, Acta Math. 81, 1–222, 1949.
  37. B. Ross, Fractional Calculus and Applications, Springer-Verlag, Berlin, New York, 1974.
  38. S. G. Samko, A. A. Kilbas and O. I. Marichev, It Fractional Integrals and Derivatives, Theory and Applications Gordon and Breach, Science Publishers, Amsterdam 1993.
  39. L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, UK, 1966.
  40. H. M. Srivastava, S. Gaboury and R. Tremblay, New relations involving an extended multiparameter Hurwitz-Lerch zeta function with applications Int. J. Anal. 2014, Article ID 680850, 1–14, 2014.
  41. H. M. Srivastava, J.-L. Lavoie and R. Tremblay, The Rodrigues type representations for a certain class of special functions, Ann. Mat. Pura Appl. 4, 9–24, 1979.
  42. H. M. Srivastava, J.-L. Lavoie and R. Tremblay, A class of addition theorems, Canad. Math. Bull. 26, 438–445, 1983.
  43. R. Tremblay, Une Contribution à la Théorie de la Dérivée Fractionnaire, Thèse de doctorat Université Laval, Québec, Canada, 1–544, 1974.
  44. R. Tremblay, Some operational formulas involving the operator xD and the fractional derivatives, SIAM J. Math. Anal. 5, 933–943, 1979.
  45. R. Tremblay and B. J. Fugère, Expansions of operators related to xD and the fractional derivative, SIAM J. Math. Anal. 6, 1214–1219, 1984.
  46. R. Tremblay and B. J. Fugère, Commutativity of the fractional operator zαDzαzγ and a generalization of a Glaisher’s result, Int. Trans. Spec. Func. 2, 285–314, 1994.
  47. R. Tremblay and B. J. Fugère, The use of fractional derivatives to expand analytical functions in terms of quadratic functions with applications to special functions, Appl. Math. Comput. 187, 507–529, 2007.
  48. R. Tremblay and S. Gaboury, Well-posed fractional calculus: obtaining new transformations formulas involving Gauss hypergeometric functions with rational quadratic, cubic and higher degree arguments, Math. Meth. Appl. Sc. 41 (13), 507–529, 2018.
  49. R. Tremblay, S. Gaboury and B. J. Fugère, A new transformation formula for fractional derivatives with applications, Integral Transforms Spec. Funct. 24 (3), 172–186, 2013.
  50. R. Tremblay, S. Gaboury and B. J. Fugère, Taylor-like expansion in terms of a rational function obtained by means of fractional derivatives, Integral Transforms Spec. Funct. 24 (1), 50–64, 2013.