Title: Fractional Derivatives of Logarithmic Singular Functions and Applications to Special Functions
Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814
Article ID: MTJPAM-D-20-00021; Volume 3 / Issue 1 / Year 2021, Pages 7-37
Document Type: Research Paper
aDépartement d’Informatique et Mathématique, Université du Québec à Chicoutimi, Chicoutimi, Qué., Canada G7H 2B1
Received: 26 July 2020, Accepted: 14 October 2020, Available online: 7 January 2021.
Corresponding Author: Richard Tremblay (Email address: rtrembla@uqac.ca)
Full Text: PDF
Abstract
In 1974, Lavoie, Tremblay and Osler (Fundamental properties of fractional derivatives via Pochhammer integrals in ‘Fractional calculus and its applications’, Lecture Notes in Mathematics No.457, Springer-Verlag, (1974), 323-356) introduced a Pochhammer integral representation in the complex plane for the fractional derivative $D_{z}^{\alpha}\, z^{p} (\ln \ z)^{\delta} f(z)$ where $\delta = 0$ or 1. In the same vein, we present integral representations for the fractional derivative of functions with multiple branch-points (complex power, logarithm and their product) $D_{z-z_{0}}^{\alpha}U_{ \delta,\, \theta; \, p, \, q} \, (z-z_{0}, w-z)\big|_{w=z}^{*}$ where $U_{\delta,\, \theta; \, p, \, q} \, (z-z_{0}, w-z)= f(z-z_{0},w-z)(z-z_{0})^{p}(w-z)^{q} \ [\ln(z – z_{0}) ]^{\delta} \[\ln(w-z)]^{\theta}$ for value $ \delta, \, \theta = 0$ or 1 using a Pochhammer contour integral enclosing the singularity points $z_{0}$, $z$ and $w$. The symbol (*) indicates that $w \rightarrow z$ inside the Pochhammer contour used for the representation. The transformation formula for the fractional operator $D_{z-z_{0}}^{\alpha}U_{ \delta,\, \theta; \, p+r, \, q}\,(z-z_{0},w-z)\big|_{w=z}^{*}=\frac{\Gamma(1+p)}{\Gamma(-\alpha)} D_{z-z_{0}^{}}^{-p-1} U_{ \delta,\,\theta; r; \, q-\alpha-1} \, (w-z,z-z_{0})\big|_{w=z}^{*}$ is derived. Some applications to special functions are given; in particular, a new form of the Leibniz rule is obtained. Another application includes many summation formulas involving the orthogonal polynomials and deduced from the Christoffel-Darboux identity for orthogonal polynomials.
Keywords: Fractional derivatives, Pochhammer contour, Transformation formulas, Special functions, Leibniz rules, Christoffel-Darboux formula, Logarithmic singular function
References:- M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover publications, Inc, New York, 1965.
- P. Agarwal, A. Jain and T. Mansour, Further extended caputo fractional derivative operator and its applications, Russian J. Math. Phys. 24, 415–425, 2017.
- P. Appell and J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques: Polynômes d’Hermite, Gauthier-Villars, Paris, 1926.
- L. M. B. C. Campos, On a concept of derivative of complex order with application to special functions, IMA J. Appl. Math. 33, 109–133, 1984.
- L. M. B. C. Campos, On rules of derivation with complex order for analytic and branched functions, Portugaliae Mathematica 43 (3), 347–376, 1985-86.
- A. Erdelyi, An integral equation involving Legendre polynomials, SIAM J. Appl. Math. 12, 15–30, 1964.
- A. Erdelyi, Axially symetric potentials and fractional integration, SIAM J. Appl. Math. 13, 216–228, 1965.
- A. Erdelyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher Transcendental Functions, Vol. 3, McGraw-Hill, New York, 1953.
- A. Erdelyi, W. Magnus, F. Oberhettinger and F. Tricomi, Tables of Integral Transforms, Vol. 2, McGraw-Hill, New York, 1953.
- B. J. Fugère, S. Gaboury and R. Tremblay, Leibniz rules and integral analogues for fractional derivatives via a new transformation formula, Bul. Math. Anal. Appl. 4 (2), 72–82, 2012.
- S. Gaboury and R. Tremblay and B. J. Fugère, Some relations involving a generalized fractional derivative operator, J. Inequal. Appl. 167, 1–10, 2013.
- S. Gaboury and R. Tremblay, A note on some new series of special functions, Integral Transforms Spec. Funct. 25 (5), 336–343, 2014.
- S. Gaboury and R. Tremblay, An expansion theorem involving H-function of several complex variables, Int. J. Anal. 2013, Article ID 353547, 1–7, 2013.
- S. Gaboury and R. Tremblay, Summation formula obtained by means of the generalized chain rule for fractional derivatives, J. Complex. Anal. 2014, Article ID 820951, 1–7, 2014.
- I. M. Gel’fand and G. E. Shilov, Generalized Functions, Vol. 1, Academic Press, New York and London, 1964.
- G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals, Proc. London Math. Soc. Ser. 24 (2), 37–41, 1925.
- G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. I., Math. Z. 27 (4), 565–606, 1928.
- G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II., Math. Z. 34, 403–439, 1932.
- , The Use of Fractional Integral Operators for Solving Nonhomogeneous Differential Equations, Document D1-82-0677, Boeing Scientific Research Laboratories, Seattle, Wash., 1967.
- J.-L. Lavoie, T. J. Osler and R. Tremblay, Fundamental properties of fractional derivatives via Pochhammer integrals in ’Fractional calculus and its applications’, Lecture Notes in Mathematics, No. 457, Springer-Verlag, Berlin-Heidelberg-New York, 323–356, 1974.
- J.-L. Lavoie, T. J. Osler and R. Tremblay, Fractional derivatives and special functions, SIAM Rev. 18, 240–268, 1976.
- P. A. Nekrassov, Generalized differentiation, Mat. Sb. 14, 45–168, 1888.
- K. Nishimoto, Fractional Calculus, Vols. I, II and III, Descartes Press, Koriyama, Japan, 1984, 1985 and 1989.
- K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York and London, 1974.
- T. J. Osler, Leibniz Rule, the Chain Rule and Taylor’s Theorem for Fractional Derivatives, Doctoral thesis, New York University, New York, 1970.
- T. J. Osler, Leibniz rule for fractional derivatives and an application to infinite series, SIAM J. Appl. Math. 18, 658–674, 1970.
- T. J. Osler, Fractional derivatives of a Composite function, SIAM J. Math. Anal. 1, 288–293, 1970.
- T. J. Osler, Fractional derivatives and Leibniz rule, Amer. Math. Monthly. 78, 645–649, 1971.
- T. J. Osler, Taylor’s series generalized for fractional derivatives and applications, SIAM J. Math. Anal. 2, 37–48, 1971.
- T. J. Osler, A further extension of the Leibniz rule to fractional derivatives and it’s relation to Parseval’s formula, SIAM J. Math. Anal. 3, 1–16, 1972.
- T. J. Osler, An integral analog of the Leibniz rule, SIAM J. Math. Anal. 26 (120), 903–915, 1972.
- T. J. Osler, An integral analog of Taylor’s series and its use in computing Fourier transform, Math. Compt. 26, 449–460, 1972.
- T. J. Osler, A correction to Leibniz rule for fractional derivatives, SIAM J. Math. Anal. 4, 456–459, 1973.
- E. L. Post, Generalized diffrrentiation, Trans. Amer. Math. Soc. 32, 723–781, 1930.
- E. D. Rainville, Special Functions, Macmillan Company, New York, 1960.
- M. Riesz, L’intégral de Riemann-Liouville et le probléme de Cauchy, Acta Math. 81, 1–222, 1949.
- B. Ross, Fractional Calculus and Applications, Springer-Verlag, Berlin, New York, 1974.
- S. G. Samko, A. A. Kilbas and O. I. Marichev, It Fractional Integrals and Derivatives, Theory and Applications Gordon and Breach, Science Publishers, Amsterdam 1993.
- L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, UK, 1966.
- H. M. Srivastava, S. Gaboury and R. Tremblay, New relations involving an extended multiparameter Hurwitz-Lerch zeta function with applications Int. J. Anal. 2014, Article ID 680850, 1–14, 2014.
- H. M. Srivastava, J.-L. Lavoie and R. Tremblay, The Rodrigues type representations for a certain class of special functions, Ann. Mat. Pura Appl. 4, 9–24, 1979.
- H. M. Srivastava, J.-L. Lavoie and R. Tremblay, A class of addition theorems, Canad. Math. Bull. 26, 438–445, 1983.
- R. Tremblay, Une Contribution à la Théorie de la Dérivée Fractionnaire, Thèse de doctorat Université Laval, Québec, Canada, 1–544, 1974.
- R. Tremblay, Some operational formulas involving the operator xD and the fractional derivatives, SIAM J. Math. Anal. 5, 933–943, 1979.
- R. Tremblay and B. J. Fugère, Expansions of operators related to xD and the fractional derivative, SIAM J. Math. Anal. 6, 1214–1219, 1984.
- R. Tremblay and B. J. Fugère, Commutativity of the fractional operator zαDzαzγ and a generalization of a Glaisher’s result, Int. Trans. Spec. Func. 2, 285–314, 1994.
- R. Tremblay and B. J. Fugère, The use of fractional derivatives to expand analytical functions in terms of quadratic functions with applications to special functions, Appl. Math. Comput. 187, 507–529, 2007.
- R. Tremblay and S. Gaboury, Well-posed fractional calculus: obtaining new transformations formulas involving Gauss hypergeometric functions with rational quadratic, cubic and higher degree arguments, Math. Meth. Appl. Sc. 41 (13), 507–529, 2018.
- R. Tremblay, S. Gaboury and B. J. Fugère, A new transformation formula for fractional derivatives with applications, Integral Transforms Spec. Funct. 24 (3), 172–186, 2013.
- R. Tremblay, S. Gaboury and B. J. Fugère, Taylor-like expansion in terms of a rational function obtained by means of fractional derivatives, Integral Transforms Spec. Funct. 24 (1), 50–64, 2013.