Article ID: MTJPAM-D-21-00036

Title: On some properties of nonuniform multi-wavelet Bessel sequences on spectrum


Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-21-00036; Volume 4 / Issue 2 / Year 2022, Pages 72-80

Document Type: Research Paper

Author(s): Owais Ahmad a , Ishtaq Ahmad b , Mobin Ahmad c , Neyaz A. Sheikh d

aDepartment of Mathematics, National Institute of Technology, Hazratbal, Srinagar – 190 006, Jammu and Kashmir, India

bDepartment of Mathematics, National Institute of Technology, Hazratbal, Srinagar – 190 006, Jammu and Kashmir, India

cDepartment of Mathematics, Faculty of Science, Jazan University, Jazan – 45142, Saudi Arabia

dDepartment of Mathematics, National Institute of Technology, Hazratbal, Srinagar – 190 006, Jammu and Kashmir, India

Received: 23 May 2021, Accepted: 4 June 2022, Published: 10 August 2022.

Corresponding Author: Owais Ahmad (Email address: siawoahmad@gmail.com)

Full Text: PDF


Abstract

In this paper, we study some properties of Nonuniform multiwavelet Bessel sequences in Sobolev spaces on spectrum.

Keywords: Fourier transform, Bessel sequence, Sobolev space, spectral pair

References:
  1. O. Ahmad, Nonuniform periodic wavelet frames on non-archimedean fields, Ann. Univ. Mariae Curie-Skłodowska Sect. A LXXIV (2), 1–17, 2020.
  2. O. Ahmad and N. Ahmad, Construction of nonuniform wavelet frames on non-Archimedean fields, Math. Phys. Anal. Geom. 23, 2020; Article ID: 47.
  3. O. Ahmad, M. Y. Bhat, N. A. Sheikh, Construction of parseval framelets associated with GMRA on local fields of positive characteristic, Numer. Funct. Anal. Optim. 42 (3), 344–370, 2021.
  4. O. Ahmad, F. A. Shah and N. A. Sheikh, Gabor frames on non-Archimedean fields, Int. J. Geom. Methods Mod. Phys. 15 (5), 2018; Article ID: 1850079.
  5. O. Ahmad and N. A. Sheikh, On characterization of nonuniform tight wavelet frames on local fields, Anal. Theory Appl. 34, 135–146, 2018.
  6. O. Ahmad and N. A. Sheikh, Nonuniform wavelet frames on local fields, Jordan J. Math. Stat. 11 (1), 51–67, 2018.
  7. O. Ahmad and N. A. Sheikh, Explicit construction of tight nonuniform framelet packets on local fields, Oper. Matrices 15 (1), 131–149, 2021.
  8. O. Ahmad, N. A. Sheikh and M. A. Ali, Nonuniform nonhomogeneous dual wavelet frames in Sobolev spaces in L^2(\mathbb K), Afr. Mat. 31, 1145–1156, 2020.
  9. O. Ahmad, N. A. Sheikh, K. S. Nisar and F. A. Shah, Biorthogonal wavelets on spectrum, Math. Methods Appl. Sci. 44 (6), 4479–4490, 2021.
  10. J. J. Benedetto and R. L. Benedetto, A wavelet theory for local fields and related groups, J. Geom. Anal. 14, 423–456, 2004.
  11. O. Christensen, An introduction to frames and Riesz bases, Birkhäuser, Boston, 2003.
  12. I. Daubechies, Ten lectures on wavelets, Society for Industrial and Applied Mathematics, Philadelphia, 1992.
  13. I. Daubechies, A. Grossmann and Y. Meyer, Painless non-orthogonal expansions, J. Math. Phys. 27 (5), 1271–1283, 1986.
  14. L. Dayong and L. Dengfeng, A characterization of orthonormal wavelet families in Sobolev spaces, Acta Math. Sci. 31 (4), 1475–1488, 2011.
  15. R. J. Duffin and A. C. Shaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72, 341–366, 1952.
  16. J. P. Gabardo and M. Nashed, Nonuniform multiresolution analyses and spectral pairs, J. Funct. Anal. 158, 209–241, 1998.
  17. B. Han and Q. Mo, Multiwavelet frames from refinable function vectors, Adv. Comput. Math. 18 (2), 211–245, 2003.
  18. B. Han and Z. Shen, Dual wavelet frames and Riesz bases in Sobolev spaces, Constr. Approx. 29 (3), 369–406, 2009.
  19. B. Han and Z. Shen, Characterization of Sobolev spaces of arbitrary smoothness using nonstationary tight wavelet frames. Isr. J. Math. 172 (1), 371–398, 2009.
  20. Y. Li, S. Yang and D. Yuan, Bessel multiwavelet sequences and dual multiframelets in Sobolev spaces, Adv. Comput. Math. 38 (3), 491–529, 2013.
  21. F. A. Shah and O. Ahmad, Wave packet systems on local fields, J. Geom. Phys. 120, 5–18, 2017.
  22. F. A. Shah, O. Ahmad and A. Rahimi, Frames associated with shift invariant spaces on local fields, Filomat 32 (9), 3097–3110, 2018.
  23. F. A. Shah, O. Ahmad and N. A. Sheikh, Orthogonal Gabor systems on local fields, Filomat 31 (16), 5193–5201, 2017.
  24. F. A. Shah, O. Ahmad and N. A. Sheikh, Some new inequalities for wavelet frames on local fields, Anal. Theory Appl. 33 (2), 134–148, 2017.
  25. M. H. Taibleson, Fourier analysis on local fields, Princeton University Press, Princeton, NJ, 1975.
  26. H. Zhang, Y. Dong and Q. Fan, Wavelet frame based Poisson noise removal and image deblurring, Signal Process. 137, 363–372, 2017.