Title: On some properties of nonuniform multi-wavelet Bessel sequences on spectrum
Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814
Article ID: MTJPAM-D-21-00036; Volume 4 / Issue 2 / Year 2022, Pages 72-80
Document Type: Research Paper
Author(s): Owais Ahmad a , Ishtaq Ahmad b , Mobin Ahmad c , Neyaz A. Sheikh d
aDepartment of Mathematics, National Institute of Technology, Hazratbal, Srinagar – 190 006, Jammu and Kashmir, India
bDepartment of Mathematics, National Institute of Technology, Hazratbal, Srinagar – 190 006, Jammu and Kashmir, India
cDepartment of Mathematics, Faculty of Science, Jazan University, Jazan – 45142, Saudi Arabia
dDepartment of Mathematics, National Institute of Technology, Hazratbal, Srinagar – 190 006, Jammu and Kashmir, India
Received: 23 May 2021, Accepted: 4 June 2022, Published: 10 August 2022.
Corresponding Author: Owais Ahmad (Email address: siawoahmad@gmail.com)
Full Text: PDF
Abstract
In this paper, we study some properties of Nonuniform multiwavelet Bessel sequences in Sobolev spaces on spectrum.
Keywords: Fourier transform, Bessel sequence, Sobolev space, spectral pair
References:- O. Ahmad, Nonuniform periodic wavelet frames on non-archimedean fields, Ann. Univ. Mariae Curie-Skłodowska Sect. A LXXIV (2), 1–17, 2020.
- O. Ahmad and N. Ahmad, Construction of nonuniform wavelet frames on non-Archimedean fields, Math. Phys. Anal. Geom. 23, 2020; Article ID: 47.
- O. Ahmad, M. Y. Bhat, N. A. Sheikh, Construction of parseval framelets associated with GMRA on local fields of positive characteristic, Numer. Funct. Anal. Optim. 42 (3), 344–370, 2021.
- O. Ahmad, F. A. Shah and N. A. Sheikh, Gabor frames on non-Archimedean fields, Int. J. Geom. Methods Mod. Phys. 15 (5), 2018; Article ID: 1850079.
- O. Ahmad and N. A. Sheikh, On characterization of nonuniform tight wavelet frames on local fields, Anal. Theory Appl. 34, 135–146, 2018.
- O. Ahmad and N. A. Sheikh, Nonuniform wavelet frames on local fields, Jordan J. Math. Stat. 11 (1), 51–67, 2018.
- O. Ahmad and N. A. Sheikh, Explicit construction of tight nonuniform framelet packets on local fields, Oper. Matrices 15 (1), 131–149, 2021.
- O. Ahmad, N. A. Sheikh and M. A. Ali, Nonuniform nonhomogeneous dual wavelet frames in Sobolev spaces in
, Afr. Mat. 31, 1145–1156, 2020.
- O. Ahmad, N. A. Sheikh, K. S. Nisar and F. A. Shah, Biorthogonal wavelets on spectrum, Math. Methods Appl. Sci. 44 (6), 4479–4490, 2021.
- J. J. Benedetto and R. L. Benedetto, A wavelet theory for local fields and related groups, J. Geom. Anal. 14, 423–456, 2004.
- O. Christensen, An introduction to frames and Riesz bases, Birkhäuser, Boston, 2003.
- I. Daubechies, Ten lectures on wavelets, Society for Industrial and Applied Mathematics, Philadelphia, 1992.
- I. Daubechies, A. Grossmann and Y. Meyer, Painless non-orthogonal expansions, J. Math. Phys. 27 (5), 1271–1283, 1986.
- L. Dayong and L. Dengfeng, A characterization of orthonormal wavelet families in Sobolev spaces, Acta Math. Sci. 31 (4), 1475–1488, 2011.
- R. J. Duffin and A. C. Shaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72, 341–366, 1952.
- J. P. Gabardo and M. Nashed, Nonuniform multiresolution analyses and spectral pairs, J. Funct. Anal. 158, 209–241, 1998.
- B. Han and Q. Mo, Multiwavelet frames from refinable function vectors, Adv. Comput. Math. 18 (2), 211–245, 2003.
- B. Han and Z. Shen, Dual wavelet frames and Riesz bases in Sobolev spaces, Constr. Approx. 29 (3), 369–406, 2009.
- B. Han and Z. Shen, Characterization of Sobolev spaces of arbitrary smoothness using nonstationary tight wavelet frames. Isr. J. Math. 172 (1), 371–398, 2009.
- Y. Li, S. Yang and D. Yuan, Bessel multiwavelet sequences and dual multiframelets in Sobolev spaces, Adv. Comput. Math. 38 (3), 491–529, 2013.
- F. A. Shah and O. Ahmad, Wave packet systems on local fields, J. Geom. Phys. 120, 5–18, 2017.
- F. A. Shah, O. Ahmad and A. Rahimi, Frames associated with shift invariant spaces on local fields, Filomat 32 (9), 3097–3110, 2018.
- F. A. Shah, O. Ahmad and N. A. Sheikh, Orthogonal Gabor systems on local fields, Filomat 31 (16), 5193–5201, 2017.
- F. A. Shah, O. Ahmad and N. A. Sheikh, Some new inequalities for wavelet frames on local fields, Anal. Theory Appl. 33 (2), 134–148, 2017.
- M. H. Taibleson, Fourier analysis on local fields, Princeton University Press, Princeton, NJ, 1975.
- H. Zhang, Y. Dong and Q. Fan, Wavelet frame based Poisson noise removal and image deblurring, Signal Process. 137, 363–372, 2017.