Title: Multi-index Fubini-type polynomials
Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814
Article ID: MTJPAM-D-21-00044; Volume 4 / Issue 1 / Year 2022, Pages 97-106
Document Type: Research Paper
Author(s): Musharraf Ali a , Richard B. Paris
b
aDepartment of Mathematics, G.F. College, Shahjahanpur-242001, India
bDivision of Computing and Mathematics, Abertay University, Dundee DD1 1HG, UK
Received: 19 June 2021, Accepted: 19 October 2021, Published: 5 December 2021.
Corresponding Author: Musharraf Ali (Email address: drmusharrafali@gmail.com)
Full Text: PDF
Abstract
We introduce a new family of two-variable Fubini-type polynomials by utilizing the multi-index Mittag-Leffler function. By means of this latter function, we also define a new type of Stirling numbers of the second kind. Furthermore, some analytical properties of the above-mentioned polynomials and numbers are discussed.
Keywords: Fubini polynomials, Truncated Fubini polynomials, Truncated Bernoulli polynomials, Truncated Euler polynomials, Stirling numbers of the second kind, Mittag-Leffler function, Wiman function
References:- R. P. Agarwal, A propos d’une note de M. Pierre Humbert, C.R. Seances Acad. Sci. 236 (21), 2031–2032, 1953.
- E. Bazhlekova, Completely monotone multinomial Mittag-Leffler type functions and diffusion equations with multiple time-derivatives, Fract. Calc. Appl. Anal. 24, 88–111, 2021.
- G. Dattoli, C. Ceserano and D. Sacchetti, A note on truncated polynomials, Appl. Math. Comput. 134, 595–605, 2003.
- U. Duran and M. Acikgoz, Truncated Fubini polynomials, Mathematics 7 (5), 431, 1–15, 2019.
- M. Ghayasuddin, M. Ali, W. A. Khan, K. S. Nisar and T. Abdeljawad, Some properties of the two-variable Fubini type polynomials, 2020, (Communicated).
- I. J. Good, The number of ordering of n candidates when ties are permitted, Fibonacci Quart. 13, 11–18, 1975.
- R. Gorenflo, A. Kilbas, F, Mainardi and S. Rogosin, Mittag-Leffler functions related topics and applications, Springer, Berlin, 2020.
- A. Hassen and H. D. Nguyen, Hypergeometric Bernoulli polynomials and Appell sequences, Int. J. Number Theory 4, 767–774, 2008.
- S. Khan, G. Yasmin and N. Ahmad, A note on truncated exponential-based Appell polynomials, Bull. Malays. Math. Sci. Soc. 40, 373–388, 2017.
- N. Kilar and Y. Simsek, A new family of Fubini-type numbers and polynomials associated with Apostol-Bernoulli numbers and polynomials, J. Korean Math. Soc. 54, 1605–1621, 2017.
- D. S. Kim, T. Kim, H. -I. Kwon and J. -W Park, Two variable higher-order Fubini polynomials, J. Korean Math. Soc. 55, 975–986, 2018.
- T. Kim, D. S. Kim and JG. -W. Jang, A note on degenerate Fubini polynomials, Proc. Jangjeon Math. Soc. 20, 521–531, 2017.
- V. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math. 118, 241–259, 2000.
- V. Kiryakova, The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus, Comput. Math. with Appl. 59, 1885–1895, 2010.
- V. Kiryakova, Unified approach to fractional calculus images of special functions – a survey, Mathematics 8 (12), 2260, 1–35, 2020.
- T. Komatsu and C. D. J. P. Ruiz, Truncated Euler polynomials, Math. Slovaca 88, 527–536, 2018.
- G. M. Luo, Q. M. and H. M. Srivastava, Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind, Appl. Math. Comput. 217, 5702–5728, 2011.
- G. M. Mittag-Leffler, Sur la représentation analytique d’une branche uniforme d’une function monogène, Acta Math. 29, 101–182, 1905.
- J. Paneva-Konovska, From bessel to Multi-Index Mittag-Leffler functions: enumerable families, series in them and convergence, World Scientific, London, 2016.
- J. Paneva-Konovska, A survey on Bessel-type functions as multi-index Mittag-Leffler functions: Differential and integral relations, Intern. J. Appl. Math. 32 (3), 357–380, 2019.
- J. Paneva-Konovska and V. Kiryakova, On the multi-index Mittag-Leffler functions and their Mellin transforms, Int. J. Appl. Math. 33 (4), 549–571, 2020.
- R. B. Paris, Asymptotics of the special functions of fractional calculus, 297–325; In Handbook of fractional calculus with applications (A. Kochubei Yu. Luchko and J.A. Teneiro Machado eds.), De Gruyter, Berlin, 2019.
- E. D. Rainville, Special functions, Macmillan Company, New York, 1960. Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.
- Y. Simsek, Interpolation functions for new classes of special numbers and polynomials via applications of p-adic integrals and derivative operator, Montes Taurus J. Pure Appl. Math. 3 (1), 38–61, 2021; Article ID: MTJPAM-D-20-00000.
- H. M. Srivastava and H. L. Manocha, A treatise on generating functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.
- H. M. Srivastava, S. Araci, W. A. Khan and M. Acikgoz, A note on the truncated-exponential based Apostol-type polynomials, Symmetry 11 (4), 538, 1–20, 2019.
- D. D. Su and Y. He, Some identities for the two variable Fubini polynomials, Mathematics 7 (2), 115, 1–11, 2019.
- A. Wiman, Uber den Fundamentalsatz in der Theorie der Funktionen Eα(x), Acta Math. 29, 191–207, 1905.
- G. Yasmin, S. Khan and N. Ahmad, Operational methods and truncated exponential-based Mittag-Leffler polynomials, Mediterr. J. Math. 13 (4), 1555–1569, 2016.