Title: Diagonal M-contractive maps on ordered metric spaces
Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814
Article ID: MTJPAM-D-21-00081; Volume 4 / Issue 3 / Year 2022 (Special Issue), Pages 152-165
Document Type: Research Paper
aA. Myller Mathematical Seminar, A. I. Cuza University, 700506 Iaşi, Romania
Received: 10 February 2022, Accepted: 11 August 2022, Published: 26 November 2022.
Corresponding Author: Mihai Turinici (Email address: mturi@uaic.ro)
Full Text: PDF
Abstract
A (Matkowski type) functional extension – to the realm of ordered metric spaces – is given for the diagonal fixed point result in Ćirić and Prešić (Acta Math. Univ. Comenian. 76, 143–147, 2007) involving Prešić iterative processes.
Keywords: Ordered metric space, Diagonal fixed point, Prešić iterative process, Admissible function, Matkowski functional contraction
References:- M. Abbas, D. Ilić and T. Nazir, Iterative approximation of fixed points of generalized weak Prešić type k-step iterative methods for a class of operators, Filomat 29, 713–724, 2015.
- S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3, 133–181, 1922.
- F. E. Browder, On the convergence of successive approximations for nonlinear functional equations, Indag. Math. 30, 27–35, 1968.
- Y.-Z. Chen, A Prešić type contractive condition and its applications, Nonlinear Anal. 71, 2012–2017, 2009.
- L. B. Ćirić and S. B. Prešić, On Prešić type generalization of the Banach contraction mapping principle, Acta Math. Univ. Comenian. 76, 143–147, 2007.
- P. N. Dutta and B. S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl. 2008, 2008; Article ID: 406368.
- R. George and M. S. Khan, On Prešić type extension of Banach contraction principle, Int. J. Math. Anal. (Ruse) 5 (21), 1019–1024, 2011.
- A. Gholidahaneh, S. Sedghi and V. Parvaneh, Some fixed point results for Perov-Ćirić-Prešić type F-contractions and applications, J. Funct. Spaces 2020, 2020; Article ID: 1464125.
- M. S. Khan, M. Berzig and B. Samet, Some convergence results for iterative sequences of Prešić type and applications, Adv. Difference Equ. 2012, 2012; Article ID: 38.
- A. Latif, T. Nazir and M. Abbas, Fixed point results for multivalued Preši‘ c type weakly contractive mappings, Mathematics 7 (7), 2019; Aritcle ID: 601.
- J. Matkowski, Integrable solutions of functional equations, Dissertationes Math. 127, Polish Sci. Publ., Warsaw, 1975.
- P. P. Murthy, A common fixed point theorem of Prešić type for three maps in fuzzy metric space, Annual Rev. Chaos Th. Bifurcations Dyn. Syst. 4, 30–36, 2013.
- H. K. Pathak, R. George, H. A. Nabway, M. S. El-Paoumi and K. P. Reshma, Some generalized fixed point results in a b-metric space and application to matrix equations, Fixed Point Theory Appl. 2015, 2015; Article ID: 101.
- M. Păcurar, Approximating common fixed points of Prešić-Kannan type operators by a multi-step iterative method, An. Şt. Univ. “Ovidius” Constanţa Ser. Mat. 17, 153–168, 2009.
- M. Păcurar, Fixed points of almost Prešić operators by a k-step iterative method, An. Şt. Univ. “Al. I. Cuza” Iaşi Mat. (N.S.) 57, 199–210, 2011.
- S. B. Prešić, Sur une classe d’inéquations aux différences finies et sur la convergence de certaines suites, Publ. Inst. Math. (Beograd) (N.S.) 5 (19), 75–78, 1965.
- R. Rajagopalan, A generalised fixed point theorem for set valued Prešić type contractions in a metric space, Internat. J. Engrg. Sci. 13, 3872–3876, 2020.
- K. P. R. Rao, M. M. Ali and B. Fisher, Some Prešić type generalizations of the Banach contraction principle, Math. Morav. 15, 41–47, 2011.
- I. A. Rus, An iterative method for the solution of the equation x = f(x, …, x), Mathematica (Rev. Anal. Num. Th. Approx.) 10, 95–100, 1981.
- I. A. Rus, Generalized contractions and applications, Cluj University Press, Cluj-Napoca, 2001.
- N. Shahzad and S. Shukla, Set-valued G-Prešić operators on metric spaces endowed with a graph and fixed point theorems, Fixed Point Theory Appl. 2015, 2015; Article ID: 24.
- S. Shukla, N. Mlaiki and H. Aydi, On (G,G′)-Prešić-Ćirić operators in graphical metric spaces, Mathematics 7, 2019, Article ID: 445.
- S. Shukla, S. Radenović and S. Pantelić, Some fixed point theorems for Prešić-Hardy-Rogers type contractions in metric spaces, J. Math. 2013, 2013; Article ID: 295093.
- M. R. Tasković, Some results in the fixed point theory, Publ. Inst. Math. (Beograd) (N.S.) 20 (34), 231–242, 1976.
- M. R. Tasković, On a question of priority regarding a fixed point theorem in a Cartesian product of metric spaces, Math. Morav. 15, 69–71, 2011.
- M. Turinici, Wardowski implicit contractions in metric spaces, 2013; ArXiv: 1211-3164-v2.
- M. Turinici, Modern directions in metrical fixed point theory, Pim Editorial House, Iaşi, 2016.
- M. Turinici, Reports in metrical fixed point theory, Pim Editorial House, Iaşi, 2020.
- S. S. Yeşilkaya, Prešić type operators for a pair mappings, Turk. J. Math. Comput. Sci. 13, 204–210, 2021.