Article ID: MTJPAM-D-22-00011

Title: Homogeneous q-blossoming and Bézier curves


Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814

Article ID: MTJPAM-D-22-00011; Volume 4 / Issue 2 / Year 2022, Pages 86-102

Document Type: Research Paper

Author(s): Çetin Dişibüyük a

aDepartment of Mathematics, Dokuz Eylül University, Faculty of Science, Tınaztepe Campus, 35390 Buca, İzmir, Turkey

Received: 25 March 2022, Accepted: 3 September 2022, Published: 11 October 2022.

Corresponding Author: Çetin Dişibüyük (Email address: cetin.disibuyuk@deu.edu.tr)

Full Text: PDF


Abstract

Homogeneous q-blossom is introduced by altering the diagonal property of classical homogeneous blossom. We apply this new blossom to define two parameter family of Bernstein basis functions and Bézier curves. A special case of homogeneous q-blossom gives infinitely many de Casteljau type algorithms for classical Bézier curves. An analogue of Marsden’s identity is also derived by applying homogeneous q-blossom. Properties and identities of new Bernstein basis functions and Bézier curves including affine invariance, linear precision and end point interpolation derived. De Casteljau type evaluation algorithm is used to develop a subdivision procedure for (q1, q2)-Bézier curves. Finally, it is shown that the control polygons generated by recursive midpoint subdivision converge uniformly to the original (q1, q2)-Bézier curve.

Keywords: q-blossom, homogeneous q-blossom, (q1, q2)-Bernstein basis functions, (q1, q2)-Bézier curves, de Casteljau algorithm, subdivision

References:
  1. R. Ait-Haddou, Y. Sakane and T. Nomura, Chebyshev blossoming in Müntz spaces: Toward shaping with Young diagrams, J. Comput. Appl. Math. 247, 172–208, 2013.
  2. Ç. Dişibüyük and R. Goldman, A unifying structure for polar forms and for Bernstein Bézier curves, J. Approx. Theory 192, 234–249, 2015.
  3. R. Goldman, Pyramid algorithms: A dynamic programming approach to curves and surfaces for geometric modeling, The Morgan Kaufmann Series in Computer Graphics, Elsevier Science, 2002.
  4. R. Goldman and P. Simeonov, Formulas and algorithms for quantum differentiation of quantum Bernstein bases and quantum Bézier curves based on quantum blossoming, Graphical Models 74, 326–334, 2012.
  5. R. Goldman and P. Simeonov, Quantum Bernstein bases and quantum Bézier curves, J. Comput. Appl. Math. 288, 284–303, 2015.
  6. R. Goldman and P. Simeonov, Novel polynomial Bernstein bases and Bézier curves based on a general notion of polynomial blossoming, Numer. Algorithms 72, 605–634, 2016.
  7. D. Gonsor and M. Neamtu, Non-polynomial polar forms, In: Curves and Surfaces in Geometric Design (Ed. by P.-J. Laurent, A. L. Mehaute and L. L. Schumaker), (Chamonix-Mont-Blanc, 1993), Wellesley MA, A K Peters, 193–200, 1994.
  8. J. Kartiel and M. Kibler, Normal ordering for deformed boson operators and operator-valued deformed stirling numbers, J. Phys. A: Math. Gen. 25 (9), 2683–2691, 1992.
  9. K. Khan, D. Lobiyal and A. Kilicman, A de Casteljau algorithm for Bernstein type polynomials based on (p, q)-integers, Appl. Appl. Math. 13 (2), 997–101, 2018.
  10. T. Lyche, Trigonometric splines; a survey with new results, In: Shape Preserving Representations in Computer Aided Geometric Design (Ed. by J. M. Pena), Nova Science Publishers, Inc., New York, 201–227, 1999.
  11. M.-L. Mazure, Blossoming: A geometrical approach, Constr. Approx. 15 (1), 33–68, 1999.
  12. M.-L. Mazure, Chebyshev spaces with polynomial blossoms, Adv. Comput. Math. 10 (3-4), 219–238, 1999.
  13. M. Mursaleen, K. Ansari and A. Khan, On (p, q)-analogue of Bernstein operators, Appl. Math. Comput. 266, 874–882, 2015.
  14. A. M. Obad, K. Khan, D. K. Lobiyal and A. Khan, Algorithms and identities for Bézier curves via post-quantum blossom, Jordan J. Math. Stat. 15 (2), 177–197, 2022.
  15. H. Oruç and G. M. Phillips, A generalization of the Bernstein polynomials, Proc. Edinb. Math. Soc. 42, 403–413, 1999.
  16. H. Oruç and G. M. Phillips, q-Bernstein polynonials and Bézier curves, J. Comput. Appl. Math. 151 (1), 1–12, 2003.
  17. P. Simeonov, V. Zafiris and R. Goldman, h-blossoming: A new approach to algorithms and identities for hBernstein bases and hBézier curves, Comput. Aided Geom. Design 28 (9), 549–565, 2011.
  18. P. Simeonov, V. Zafiris and R. Goldman, q-blossoming: A new approach to algorithms and identities for qBernstein bases and qBézier curves, J. Approx. Theory 164 (1), 77–104, 2012.