Title: Orthogonal Polynomials Concerning to the Abel and Lindelöf Weights and Their Modifications on the Real Line
Montes Taurus J. Pure Appl. Math. / ISSN: 2687-4814
Article ID: MTJPAM-D-22-00032; Volume 4 / Issue 3 / Year 2022 (Special Issue), Pages 166-174
Document Type: Research Paper
Author(s): Gradimir V. Milovanović a
aSerbian Academy of Sciences and Arts 11000 Belgrade, Serbia & University of Niš, Faculty of Sciences and Mathematics, Niš, Serbia
Received: 4 October 2022, Accepted: 15 October 2022, Published: 28 November 2022.
Corresponding Author: Gradimir V. Milovanović (Email address: gvm@mi.sanu.ac.rs)
Full Text: PDF
Abstract
Orthogonal polynomials related to Abel and Lindelöf weight functions on , as well as ones related to some products of these weight functions, are considered. Using the moments of the weight functions, the coefficients in the three-term recurrence relations are determined in the explicit form. Also, some connections with Meixner-Pollaczek polynomials with real parameters are presented.
Keywords: Orthogonal polynomials, Three-term recurrence relation, Weight functions of Abel and Lindelöf, Logistic weights, Moments, Hankel determinants, Meixner-Pollaczek polynomials, Gaussian quadrature
References:- N. H. Abel, Solution de quelques problèmes à l’aide d’intégrales définies, In: Œuvres complètes d’Abel (Ed. by L. Sylow and S. Lie), Johnson, New York (Reprint of the Nouvelle éd., Christiania, 1881), vol. I, 11–27, 1965.
- T. K. Araaya, Umbral calculus and the Meixner-Pollaczek polynomials, Uppsala Dissertations in Mathematics, Department of Mathematics, Uppsala University, 2003.
- T. K. Araaya, The Meixner-Pollaczek polynomials and a system of orthogonal polynomials in a strip, J. Comput. Appl. Math. 170, 241–254, 2004.
- T. K. Araaya, The symmetric Meixner-Pollaczek polynomials with real parameter, J. Math. Anal. Appl. 305, 411–423, 2005.
- A. S. Cvetković and G. V. Milovanović, The Mathematica package “OrthogonalPolynomials”, Facta Univ. Ser. Math. Inform. 19, 17–36, 2004.
- A. S. Cvetković, G. V. Milovanović and N. Vasović, Recurrence relation and differential equation for a class of orthogonal polynomials, Results Math. 73 (1), 2018; Article ID: 16.
- G. Dahlquist, On summation formulas due to Plana, Lindelöf and Abel, and related Gauss-Christoffel rules, I, BIT 37, 256–295, 1997.
- G. Dahlquist, On summation formulas due to Plana, Lindelöf and Abel, and related Gauss-Christoffel rules, II, BIT 37, 804–832, 1997.
- G. Dahlquist, On summation formulas due to Plana, Lindelöf and Abel, and related Gauss-Christoffel rules, III, BIT 39, 51–78, 1999.
- W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3, 289–317, 1982.
- W. Gautschi, Orthogonal polynomials: Computation and approximation, Clarendon Press, Oxford, 2004.
- W. Gautschi and G.V. Milovanović, Polynomials orthogonal on the semicircle, J. Approx. Theory 46, 230–250, 1986.
- G. Golub and J. H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23, 221–230, 1969.
- V. Gupta and G. V. Milovanović, A solution to exponential operators, Results Math. 77, 2022; Article ID: 207.
- S. Kaijser and J. Musonda, Lp-boundedness of two singular integral operators of convolution type, Engineering mathematics. II (S. Silvestrov, M. Rančić, eds.), pp. 327–335, Springer Proc. Math. Stat., 179, Springer, Cham, 2016.
- R. Koekoek and R. F. Swarttouw, The Askey-Scheme of hypergeometric orthogonal polynomials and its q-analogue, Delft University of Technology and Systems, Department of Technical Mathematics and Informatics, Report No. 98–17, 1998.
- E. Lindelöf, Le Calcul des Résidus, Gauthier–Villars, Paris, 1905.
- J. Meixner, Orthogonale polynomsysteme mit einer besonderen gestalt der erzeugenden funktion, J. Lond. Math. Soc. 9, 6–13, 1934.
- G. Mastroianni and G.V. Milovanović, Interpolation processes – Basic theory and applications, Springer Monographs in Mathematics, Springer Verlag, Berlin – Heidelberg – New York, 2008.
- G. V. Milovanović, Summation of series and Gaussian quadratures, In: Approcimation and Computation (Ed. by R. V. M. Zahar), ISNM Vol. 119, Birkhäuser, Basel-Boston-Berlin, 459–475, 1994.
- G. V. Milovanović, A class of orthogonal polynomials on the radial rays in the complex plane, J. Math. Anal. Appl. 206, 121–139, 1997.
- G. V. Milovanović, Quadrature processes – development and new directions, Bull. Cl. Sci. Math. Nat. Sci. Math. 33, 11–41, 2008.
- G. V. Milovanović, Quadrature processes and new applications, Bull. Cl. Sci. Math. Nat. Sci. Math. 38, 83–120, 2013.
- G. V. Milovanović, Methods for computation of slowly convergent series and finite sums based on Gauss-Christoffel quadratures, Jaen J. Approx. 6 (1), 37–68, 2014.
- G. V. Milovanović, Chapter 11: Orthogonal polynomials on the real line, In: Walter Gautschi: Selected Works and Commentaries (Ed. by C. Brezinski and A. Sameh), Birkhäuser, Basel, Vol. 2, 2014.
- G. V. Milovanović, Numerical analysis and approximation theory – introduction to numerical processes and solving equations, Zavod za udžbenike, Beograd, Serbian, 2014.
- G. V. Milovanović: Summation formulas of Euler-Maclaurin and Abel-Plana: old and new results and applications, Progress in Approximation Theory and Applicable Complex Analysis – In the Memory of Q. I. Rahman (Ed. by N. K. Govil, R. N. Mohapatra, M. A. Qazi and G. Schmeisser), Springer, 429–461, 2017.
- G. V. Milovanović and A. S. Cvetković, Special classes of orthogonal polynomials and corresponding quadratures of Gaussian type, Math. Balkanica 26, 169–184, 2012.
- G. V. Milovanović, M. M. Spalević and A. S. Cvetković, Calculation of Gaussian type quadratures with multiple nodes, Math. Comput. Modelling 39, 325–347, 2004.
- J. Musonda and S. Kaijser, Three systems of orthogonal polynomials and L2-boundedness of two associated operators, J. Math. Anal. Appl. 459 (1), 464–475, 2018.
- F. W. J. Olver et al., Eds., NIST handbook of mathematical functions, National Institute of Standards and Technology and Cambridge University Press, 2010.
- F. Pollaczek, Sur une famille de polynômes orthogonaux qui contient les polynômes d’Hermite et de Laguerre comme cas limites, C. R. Acad. Sci. Paris 230, 1563–1565, 1950.
- A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and series, Vol. 1: Elementary functions, Gordon & Breach Science Publishers, New York, 1986 [Translated from the Russian].
- S. Roman, The umbral calculus, Pure and Applied Mathematics, 111. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984.